Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1327-1339.doi: 10.19799/j.cnki.2095-4239.2020.0123
Previous Articles Next Articles
Huanqing LIU(), Xu GAO, Jun CHEN, Shouyi YIN, Kangyu ZOU, Laiqiang XU, Guoqiang ZOU, Hongshuai HOU, Xiaobo JI()
Received:
2020-03-27
Revised:
2020-05-16
Online:
2020-09-05
Published:
2020-09-08
Contact:
Xiaobo JI
E-mail:hqliuooo@163.com;xji@csu.edu.cn
CLC Number:
Huanqing LIU, Xu GAO, Jun CHEN, Shouyi YIN, Kangyu ZOU, Laiqiang XU, Guoqiang ZOU, Hongshuai HOU, Xiaobo JI. Layered oxide cathode for sodium ion batteries: Interlayer glide, phase transition and performance[J]. Energy Storage Science and Technology, 2020, 9(5): 1327-1339.
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | MAITRA U, HOUSE R A, SOMERVILLE J W, et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2[J]. Nature Chemistry, 2018, 10(3): 288-295. |
3 | WANG S, SUN C, WANG N, et al. Ni- and/or Mn-based layered transition metal oxides as cathode materials for sodium ion batteries: Status, challenges and countermeasures[J]. Journal of Materials Chemistry A, 2019, 7(17): 10138-10158. |
4 | GUO S, LIU P, YU H, et al. A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2015, 127(20): 1-7. |
5 | YAN P, ZHENG J, LIU J, et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries[J]. Nature Energy, 2018, 3(7): 600-605. |
6 | LIU H, ZOU J, DING Y, et al. Flute-like Fe2O3 nanorods with modulating porosity for high performance anode materials in lithium ion batteries[J]. Chemistryselect, 2019, 4(13): 3681-3689. |
7 | YANG L, LIAO H, TIAN Y, et al. Rod‐like Sb2MoO6: Structure evolution and sodium storage for sodium‐ion batteries[J]. Small Methods, 2019, 3(5): doi: 10.1002/Smtd. 201800533. |
8 | GE P, LI S J, SHUAI H L, et al. Ultrafast sodium full batteries derived from X-Fe (X=Co, Ni, Mn) prussian blue analogs[J]. Advanced Materials, 2019, 31(3): 1806092-1806098. |
9 | GAO S, ZHAN X, CHENG Y T. Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries[J]. Journal of Power Sources, 2019, 410: 45-52. |
10 | LIU T, ZHANG Y, JIANG Z, et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage[J]. Energy & Environmental Science, 2019, 12(5): 1512-1533. |
11 | LIU Q, HU Z, CHEN M, et al. Recent progress of layered transition metal oxide cathodes for sodium-ion batteries[J]. Small, 2019, 15(32): 1805381-1805324. |
12 | HUANG M, LI M, NIU C, et al. Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries[J]. Advanced Functional Materials, 2019, 29(11): doi: 10.1002/adfm. 201807847. |
13 | NAYAK P K, YANG L, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie-International Edition, 2018, 57(1): 102-120. |
14 | ISLAM M S, FISHER C A J. Lithium and sodium battery cathode materials: Computational insights into voltage, diffusion and nanostructural properties[J]. Chemical Society Reviews, 2014, 43(1): 185-204. |
15 | DE LA LLAVE E, BORGEL V, PARK K J, et al. Comparison between Na-ion and Li-ion cells: Understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 1867-1875. |
16 | CHEN M, CHOU S L, DOU S X. Understanding challenges of cathode materials for sodium‐ion batteries using synchrotron‐based X‐ray absorption spectroscopy[J]. Batteries & Supercaps, 2019, 2(10): 842-851. |
17 | SONG W, JI X, PAN C, et al. A Na3V2(PO4)3 cathode material for use in hybrid lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(34): 14357-14363. |
18 | CHEN M, HUA W, XIAO J, et al. NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density[J]. Nature Communications, 2019, 10(1): doi: 10.1038/s41467-019-09170-5. |
19 | QIAN J F, WU C, CAO Y L, et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201702619. |
20 | GE P, LI S J, XU L Q, et al. Hierarchical hollow-microsphere metal-selenide@carbon composites with rational surface engineering for advanced sodium storage[J]. Advanced Energy Materials, 2019, 9(1): 1803035-1803013. |
21 | JO M R, KIM Y, YANG J, et al. Triggered reversible phase transformation between layered and spinel structure in manganese-based layered compounds[J]. Nature Communications, 2019, 10(1): 3385-3389. |
22 | KONG W, GAO R, LI Q, et al. Simultaneously tuning cationic and anionic redox in a P2-Na0.67Mn0.75Ni0.25O2 cathode material through synergic Cu/Mg co-doping[J]. Journal of Materials Chemistry A, 2019, 7(15): 9099-9109. |
23 | ORTIZ-VITORIANO N, DREWETT N E, GONZALO E, et al. High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries[J]. Energy & Environmental Science, 2017, 10(5): 1051-1074. |
24 | FANG Y, CHEN Z, XIAO L, et al. Recent progress in iron-based electrode materials for grid-scale sodium-ion batteries[J]. Small, 2018, 14(9): 1703116-1703119. |
25 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
26 | LI Y M, LU Y X, ZHAO C L, et al. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage[J]. Energy Storage Materials, 2017, 7: 130-151. |
27 | HONG S Y, KIM Y, PARK Y, et al. Charge carriers in rechargeable batteries: Na ions vs. Li ions[J]. Energy & Environmental Science, 2013, 6(7): 2067-2081. |
28 | DELMAS C. Sodium and sodium-ion batteries: 50 years of research[J]. Advanced Energy Materials, 2018, 8(17): 1703137-1703139. |
29 | DIDIER C, GUIGNARD M, SUCHOMEL M R, et al. Thermally and electrochemically driven topotactical transformations in sodium layered oxides NaxVO2[J]. Chemistry of Materials, 2016, 28(5): 1462-1471. |
30 | SUN Y, GUO S, ZHOU H. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage[J]. Energy & Environmental Science, 2019, 12(3): 825-840. |
31 | KOMABA S. Layered oxides as positive electrode materials for Na-ion batteries[J]. MRS Bulletin, 2014, 39: 416-422. |
32 | YANG L, LI X, LIU J, et al. Lithium-doping stabilized high-performance P2-Na0.66Li0.18Fe0.12Mn0.7O2 cathode for sodium ion batteries[J]. Journal of the American Chemical Society, 2019, 141(16): 6680-6689. |
33 | DELMAS CC.F, P. H. Structural classification and properties of the layered oxides[J]. Physica99B, 1980: 81-85. |
34 |
XU W, ZOU G, HOU H, et al. Single particle electrochemistry of collision[J]. Small, 2019, doi: 10.1002/smll.201804908.
doi: 10.1002/smll.201804908 |
35 | NAYAK P K, ERICKSON E M, SCHIPPER F, et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201702397. |
36 | GAO X, JIANG F, YANG Y, et al. Chalcopyrite-derived NaxMO2 (M=Cu, Fe, Mn) cathode: Tuning impurities for self-doping[J]. ACS Applied Materials & Interfaces, 2019, 12(2): 2432-2444. |
37 | DE BOISSE B M, CHENG J H, CARLIER D, et al. O3-NaxMn1/3Fe2/3O2 as a positive electrode material for Na-ion batteries: Structural evolutions and redox mechanisms upon Na+ (de) intercalation[J]. Journal of Materials Chemistry A, 2015, 3(20): 10976-10989. |
38 | JUNG Y H, CHRISTIANSEN A S, JOHNSEN R E, et al. In situ X-ray diffraction studies on structural changes of a P2 layered material during electrochemical desodiation/sodiation[J]. Advanced Functional Materials, 2015, 25(21): 3227-3237. |
39 | YABUUCHI N, HARA R, KAJIYAMA M, et al. New O2/P2-type Li-excess layered manganese oxides as promising multi-functional electrode materials for rechargeable Li/Na batteries[J]. Advanced Energy Materials, 2014, 4(13): doi: 10.1002/aenm.201301453. |
40 | BUCHER N, HARTUNG S, FRANKLIN J B, et al. P2-NaxCoyMn1-yO2 (y=0, 0.1) as cathode materials in sodium-ion batteries-effects of doping and morphology to enhance cycling stability[J]. Chemistry of Materials, 2016, 28(7): 2041-2051. |
41 | CLéMENT R J, BRUCE P G, GREY C P. Review-manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials[J]. Journal of the Electrochemical Society, 2015, 162(14): A2589-A2604. |
42 | WANG P F, YOU Y, YIN Y X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201701912. |
43 | KOMABA S, YABUUCHI N, NAKAYAMA T, et al. Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery[J]. Inorganic Chemistry, 2012, 51(11): 6211-6220. |
44 | TALAIE E, DUFFORT V, SMITH H L, et al. Structure of the high voltage phase of layered P2-Na2/3-zMn1/2Fe1/2O2 and the positive effect of Ni substitution on its stability[J]. Energy & Environmental Science, 2015, 8(8): 2512-2523. |
45 | YUAN D D, WANG Y X, CAO Y L, et al. Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(16): 8585-8591. |
46 | CLÉMENT R J, BILLAUD J, ROBERT ARMSTRONG A, et al. Structurally stable Mg-doped P2-Na2/3Mn1-yMgyO2 sodium-ion battery cathodes with high rate performance: Insights from electrochemical, NMR and diffraction studies[J]. Energy & Environmental Science, 2016, 9(10): 3240-3251. |
47 | MA H, SU H, AMINE K, et al. Triphase electrode performance adjustment for rechargeable ion batteries[J]. Nano Energy, 2018, 43: 1-10. |
48 | BRACONNIER J J, DELMAS C, HAGENMULLER P. Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2[J]. Materials Research Bulletin, 1982, 17: 993-1000. |
49 | YABUUCHI N, YANO M, YOSHIDA H, et al. Synthesis and electrode performance of O3-Type NaFeO2-NaNi1/2Mn1/2O2 solid solution for rechargeable sodium batteries[J]. Journal of the Electrochemical Society, 2013, 160(5): A3131-A3137. |
50 | YOSHIDA H, YABUUCHI N, KOMABA S. NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries[J]. Electrochemistry Communications, 2013, 34: 60-63. |
51 | XIE Y, WANG H, XU G, et al. In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation[J]. Advanced Energy Materials, 2016, 6(24): doi: 10.1002/aenm.201601306. |
52 | SATHIYA M, HEMALATHA K, RAMESHA K, et al. Synthesis, structure, and electrochemical properties of the layered sodium insertion cathode material: NaNi1/3Mn1/3Co1/3O2[J]. Chemistry of Materials, 2012, 24(10): 1846-1853. |
53 | YAO H R, WANG P F, WANG Y, et al. Excellent comprehensive performance of Na-based layered oxide benefiting from the synergetic contributions of multimetal ions[J]. Advanced Energy Materials, 2017, 7(15): doi: 10.1002/aenm.201700189. |
54 | VITOUX L, GUIGNARD M, SUCHOMEL M R, et al. The NaxMoO2 phase diagram (1/2≤x<1): An electrochemical devil's staircase[J]. Chemistry of Materials, 2017, 29(17): 7243-7254. |
55 | WANG X, TAMARU M, OKUBO M, et al. Electrode properties of P2-Na2/3MnyCo1-yO2 as cathode materials for sodium-ion batteries[J]. Journal of Physical Chemistry C, 2013, 117: 15545-15551. |
56 | SHI Y, LI S, GAO A, et al. Probing the structural transition kinetics and charge compensation of the P2-Na0.78Al0.05Ni0.33Mn0.60O2 cathode for sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24122-24131. |
57 | LU Z H, DAHN J R. In situ X-ray diffraction study of P2-Na2/3Ni1/3Mn2/3O2[J]. Journal of the Electrochemical Society, 2001, 148(11): A1225-A1229. |
58 | YABUUCHI N, KAJIYAMA M, IWATATE J, et al. P2-type NaxFe1/2Mn1/2O2 made from earth-abundant elements for rechargeable Na batteries[J]. Nature Materials, 2012, 11(6): 512-517. |
59 | SOMERVILLE J W, SOBKOWIAK A, TAPIA-RUIZ N, et al. Nature of the “Z”-phase in layered Na-ion battery cathodes[J]. Energy & Environmental Science, 2019, 12(7): 2223-2232. |
60 | TALAIE E, KIM S Y, CHEN N, et al. Structural evolution and redox processes involved in the electrochemical cycling of P2-Na0.67Mn0.66Fe0.20Cu0.14O2[J]. Chemistry of Materials, 2017, 29(16): 6684-6697. |
61 | DU K, ZHU J, HU G, et al. Exploring reversible oxidation of oxygen in a manganese oxide[J]. Energy & Environmental Science, 2016, 9(8): 2575-2577. |
62 | RONG X, LIU J, HU E, et al. Structure-induced reversible anionic redox activity in Na layered oxide cathode[J]. Joule, 2018, 2(1): 125-140. |
63 | LI Q, QIAO Y, GUO S, et al. Both cationic and anionic Co-(de)intercalation into a metal-oxide material[J]. Joule, 2018, 2(6): 1134-1145. |
64 | MALETTI S, GIEBELER L, OSWALD S, et al. Irreversible made reversible: Increasing the electrochemical capacity by understanding the structural transformations of NaxCo0.5Ti0.5O2[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36108-36119. |
65 | RISTHAUS T, CHEN L, WANG J, et al. P3 Na0.9Ni0.5Mn0.5O2 cathode material for sodium ion batteries[J]. Chemistry of Materials, 2019, 31: 5376-5383. |
66 | SONG B, HU E, LIU J, et al. A novel P3-type Na2/3Mg1/3Mn2/3O2 as high capacity sodium-ion cathode using reversible oxygen redox[J]. Journal of Materials Chemistry A, 2019, 7(4): 1491-1498. |
67 | RADIN M D, VAN DER VEN A. Stability of prismatic and octahedral coordination in layered oxides and sulfides intercalated with alkali and alkaline-earth metals[J]. Chemistry of Materials, 2016, 28(21): 7898-7904. |
68 | GUO S, SUN Y, LIU P, et al. Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries[J]. Science Bulletin, 2018, 63(6): 376-384. |
69 | ONG S P, CHEVRIER V L, HAUTIER G, et al. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J]. Energy & Environmental Science, 2011, 4(9): 3680-3688. |
70 | YAN P, ZHENG J, GU M, et al. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries[J]. Nature Communications, 2017, 8: 14101-14109. |
71 | KUMAKURA S, TAHARA Y, SATO S, et al. P'2-Na2/3Mn0.9Me0.1O2 (Me=Mg, Ti, Co, Ni, Cu, and Zn): Correlation between orthorhombic distortion and electrochemical property[J]. Chemistry of Materials, 2017, 29(21): 8958-8962. |
72 | WANG L, SHI J L, SU H, et al. Composite-structure material design for high-energy lithium storage[J]. Small, 2018, 14(34): doi: 10.1002/smll.201800887. |
73 | ZHOU Y N, WANG P F, NIU Y B, et al. A P2/P3 composite layered cathode for high-performance Na-ion full batteries[J]. Nano Energy, 2019, 55: 143-150. |
74 | SU H, YU H. Composite‐structure materials for Na‐ion batteries[J]. Small Methods, 2018, 3(4): 1800205-1800215. |
75 | SINGH G, TAPIA-RUIZ N, LOPEZ DEL AMO J M, et al. High voltage Mg-doped Na0.67Ni0.3-xMgxMn0.7O2 (x=0.05, 0.1) Na-ion cathodes with enhanced stability and rate capability[J]. Chemistry of Materials, 2016, 28(14): 5087-5094. |
76 | TAPIA-RUIZ N, DOSE W M, SHARMA N, et al. High voltage structural evolution and enhanced Na-ion diffusion in P2-Na2/3Ni1/3-xMgxMn2/3O2 (0≤x≤0.2) cathodes from diffraction, electrochemical and ab initio studies[J]. Energy & Environmental Science, 2018, 11(6): 1470-1479. |
77 | WANG Q C, MENG J K, YUE X Y, et al. Tuning P2-structured cathode material by Na-site Mg substitution for Na-ion batteries[J]. Journal of the American Chemical Society, 2019, 141(2): 840-848. |
78 | LIU X, ZUO W, ZHENG B, et al. P2-Na0.67AlxMn1-xO2: Cost-effective, stable and high-rate sodium electrodes by suppressing phase transitions and enhancing sodium cation mobility[J]. Angewandte Chemie-International Edition, 2019, 58: 2-12. |
79 | WANG Y, WANG L, ZHU H, et al. Ultralow‐strain Zn‐substituted layered oxide cathode with suppressed P2-O2 transition for stable sodium ion storage[J]. Advanced Functional Materials, 2020: doi: 10.1002/adfm.201910327. |
80 | WANG Q, MARIYAPPAN S, VERGNET J, et al. Reaching the energy density limit of layered O3‐NaNi0.5Mn0.5O2 electrodes via dual Cu And Ti substitution[J]. Advanced Energy Materials, 2019, 9(36): doi: 10.1002/aenm.201901785 |
81 | DING F, ZHAO C, ZHOU D, et al. A novel Ni-rich O3-Na[Ni0.60Fe0.25Mn0.15]O2 cathode for Na-ion batteries[J]. Energy Storage Materials, 2020, 30: 420-430. |
82 | ZHAO C, YAO Z, WANG Q, et al. Revealing high Na-content P2-type layered oxides as advanced sodium-ion cathodes[J]. Journal of the American Chemical Society, 2020, 142(12): 5742-5750. |
83 | LI Y, YANG Z, XU S, et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries[J]. Advanced Science, 2015, 2(6): doi: 10.1002/adus.201500031. |
84 | MU L Q, XU S Y, LI Y M, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Advanced Materials, 2015, 27(43): 6928-6933. |
85 | XIAO Y, ZHU Y F, YAO H R, et al. A stable layered oxide cathode material for high-performance sodium‐ion battery[J]. Advanced Energy Materials, 2019, 9(19): doi: 10.1002/aenm.201803978. |
86 | CHEN T, LIU W, LIU F, et al. Benefits of copper and magnesium cosubstitution in Na0.5Mn0.6Ni0.4O2 as a superior cathode for sodium ion batteries[J]. ACS Applied Energy Materials, 2019, 2(1): 844-851. |
87 | ZHAO C, DING F, LU Y, et al. High-entropy layered oxide cathodes for sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2019, 58: 1-7. |
88 | CHEN X, ZHOU X, HU M, et al. Stable layered P3/P2 Na0.66Co0.5Mn0.5O2 cathode materials for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3: 20708-20714 |
89 | XU G L, AMINE R, XU Y F, et al. Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries[J]. Energy & Environmental Science, 2017, 10(7): 1677-1693. |
90 | QI X, LIU L, SONG N, et al. Design and comparative study of O3/P2 hybrid structures for room temperature sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40215-40223. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[3] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[4] | ZHANG Haoran, CHE Haiying, GUO Kaiqiang, SHEN Zhan, ZHANG Yunlong, CHEN Hangda, ZHOU Huang, LIAO Jianping, LIU Haimei, MA Zifeng. Preparation of Sn-doped NaNi1/3Fe1/3Mn1/3-x Sn x O2 cathode materials and their electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1874-1882. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[7] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[8] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[9] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[10] | Jinping LIU, Bowei PU, Zheyi ZOU, Mingqing LI, Yuqing DING, Yuan REN, Yaqiao LUO, Jie LI, Yajie LI, Da WANG, Bing HE, Siqi SHI. Investigating thermodynamic and kinetic properties of ionic conductors via Monte Carlo simulation [J]. Energy Storage Science and Technology, 2022, 11(3): 878-896. |
[11] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[12] | Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025. |
[13] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
[14] | Hongxiang JI, Zhou JIN, Mengyu TIAN, Yida WU, Yuanjie ZHAN, Feng TIAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2021 to Sept. 30, 2021) [J]. Energy Storage Science and Technology, 2021, 10(6): 2411-2427. |
[15] | Feng TIAN, Hongxiang JI, Mengyu TIAN, Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Yida WU, Yuanjie ZHAN, Zhou JIN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2021 to Jul. 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(5): 1854-1868. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||