Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1318-1326.doi: 10.19799/j.cnki.2095-4239.2020.0095
Previous Articles Next Articles
Guangling WEI1(), Ying JIANG1, Jiahui ZHOU1, Ziheng WANG1, Yongxin HUANG1, Man XIE1(), Feng WU1,2
Received:
2020-03-07
Revised:
2020-03-25
Online:
2020-09-05
Published:
2020-09-08
Contact:
Man XIE
E-mail:weiglbit@163.com;xmxm@bit.edu.cn
CLC Number:
Guangling WEI, Ying JIANG, Jiahui ZHOU, Ziheng WANG, Yongxin HUANG, Man XIE, Feng WU. Research progress on metal oxides/sulfides/selenides anode materials of sodium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1318-1326.
1 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
2 | WU F, ZHOU J, LUO R, et al. Reduced graphene oxide aerogel as stable host for dendrite-free sodium metal anode[J]. Energy Storage Materials, 2019, 22: 376-383. |
3 | WANG H, ZHU C, CHAO D, et al. Nonaqueous hybrid lithium-ion and sodium-ion capacitors[J]. Advanced Materials, 2017, 29(46): doi: 10.1002/adma.201702093. |
4 | KLEIN F, JACHE B, BHIDE A, et al. Conversion reactions for sodium-ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(38): 15876-15887. |
5 | ZHANG N, HAN X, LIU Y, et al. 3D porous γ-Fe2O3@C Nanocomposite as high-performance anode material of Na-ion batteries[J]. Advanced Energy Materials, 2015, 5(5): doi:10.1002/aenm.20 1401123. |
6 | LIU H, CAO F, ZHENG H, et al. In situ observation of the sodiation process in CuO nanowires[J]. Chemical Communications, 2015, 51(52): 10443-10446. |
7 | LU Y, ZHANG N, ZHAO Q, et al. Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries[J]. Nanoscale, 2015, 7(6): 2770-2776. |
8 | XU M, XIA Q, YUE J, et al. Rambutan-like hybrid hollow spheres of carbon confined Co3O4 nanoparticles as advanced anode materials for sodium-ion batteries[J]. Advanced Functoinal Materials, 2019, 29: doi: 10.1002/adfm.2018073776. |
9 | GU M, KUSHIMA A, SHAO Y, et al. Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries[J]. Nano Letters, 2013, 13(11): 5203-5211. |
10 | WANG M, WANG X, YAO Z, et al. SnO2 Nanoflake arrays coated with polypyrrole on a carbon cloth as flexible anodes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24198-24204. |
11 | XU H, QIN L, WANG Z, et al. Toward advanced sodium-ion batteries a wheel-inspired yolk-shell design for large-volume-change anode materials[J]. Journal of Materials Chemistry A, 2018, 6: 13153-13163. |
12 | LIANG J, YUAN C, LI H, et al. Growth of SnO2 nanoflowers on N-doped carbon nanofibers as anode for Li- and Na-ion batteries[J]. Nano-Micro Letters, 2018, 10(2): doi: 10.1007/S40820-017-0172-2. |
13 | KIM J, PARK S, PARK J, et al. Uniquely structured composite microspheres of metal sulfides and carbon with cubic nanorooms for highly efficient anode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(6): 2636-2645. |
14 | HU Z, WANG L, ZHANG K, et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries[J]. Angewandte Chemie International Edition, 2014, 126(47): 13008-13012. |
15 | PAN Q, ZHANG Q, ZHENG F, et al. Construction of MoS2/C hierarchical tubular heterostructures for high-performance sodium ion batteries[J]. ACS Nano, 2018, 12(12): 12578-12586. |
16 | WALTER M, ZUEND T, KOVALENKO M. Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials[J]. Nanoscale, 2015, 7(20): 9158-9163. |
17 | LIU Y, FANG Y, ZHAO Z, et al. A ternary Fe1-xS@porous carbon nanowires/reduced graphene oxide hybrid film electrode with superior volumetric and gravimetric capacities for flexible sodium ion batteries[J]. Advanced Energy Materials, 2019, 9(9): doi: 10.1002/aenm.201803052. |
18 | JIN A, KIM M, LEE K, et al. Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes[J]. Nano Research, 2019, 12(3): 695-700. |
19 | CHANG X, MA Y, YANG M, et al. In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage[J]. Energy Storage Materials, 2019, 23: 358-366. |
20 | SHUANG W, HUANG H, KONG L, et al. Nitrogen-doped carbon shell-confined Ni3S2 composite nanosheets derived from Ni-MOF for high performance sodium-ion battery anodes[J]. Nano Energy, 2019, 62: 154-163. |
21 | QI H, WANG L, ZUO T, et al. Hollow structure VS2@reduced graphene oxide (RGO) architecture for enhanced sodium-ion battery performance[J]. Chemelectrochem, 2020, 7(1): 78-85. |
22 | ZHOU J, WANG L, YANG M, et al. Hierarchical VS2 nanosheet assemblies: A universal host material for the reversible storage of alkali metal ions[J]. Advanced Materials, 2017, 29(35): doi: 10.1002/adma.20 1702061. |
23 | YANG S, PARK S, KANG Y. Mesoporous CoSe2 nanoclusters threaded with nitrogen-doped carbon nanotubes for high-performance sodium-ion battery anodes[J]. Chemical Engineering Journal, 2019, 370: 1008-1018. |
24 | ZHANG Z, YANG X, FU Y, et al. Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries[J]. Journal of Power Sources, 2015, 296: 2-9. |
25 | WANG H, LAN X, JIANG D, et al. Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries[J]. Journal of Power Sources, 2015, 283: 187-194. |
26 | TANG Y, ZHAO Z, WANG Y, et al. Carbon-stabilized interlayer-expanded few-layer MoSe2 nanosheets for sodium ion batteries with enhanced rate capability and cycling performance[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32324-32332. |
27 | KO Y, CHOI S, PARK S, et al. Hierarchical MoSe2 yolk-shell microspheres with superior Na-ion storage properties[J]. Nanoscale, 2014, 6(18): doi: 10.1039/C4NR02538E. |
28 | CHOI S, KANG Y. Fullerene-like MoSe2 nanoparticles-embedded CNT balls with excellent structural stability for highly reversible sodium-ion storage[J]. Nanoscale, 2016, 8(7): 4209-4216. |
29 | ZHANG Z, FU Y, YANG X, et al. Hierarchical MoSe2 nanosheets/reduced graphene oxide composites as anodes for lithium-ion and sodium-ion batteries with enhanced electrochemical performance[J]. ChemNanoMat, 2015, 1(6): 409-414. |
30 | YANG X, ZHANG Z, FU Y, et al. Porous hollow carbon spheres decorated with molybdenum diselenide nanosheets as anodes for highly reversible lithium and sodium storage[J]. Nanoscale, 2015, 7(22): 10198-10203. |
31 | XIE D, TANG W, WANG Y, et al. Facile fabrication of integrated three-dimensional C-MoSe2/reduced graphene oxide composite with enhanced performance for sodium storage[J]. Nano Research, 2016, 9(6): 1618-1629. |
32 | TANG Y, ZHAO Z, WANG Y, et al. Carbon-stabilized interlayer-expanded few-layer MoSe2 nanosheets for sodium ion batteries with enhanced rate capability and cycling performance[J]. ACS Applied Materials & Interfaces, 2016, 8(47): 32324-32332. |
33 | ZHANG K, HU Z, LIU X, et al. FeSe2 microspheres as a high-performance anode material for Na-ion batteries[J]. Advanced Materials, 2015, 27(21): 3305-3309. |
34 | XU X, LIU J, LIU J, et al. A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries[J]. Advanced Functional Materials, 2018, 28(16): doi: 10.1002/adfm.201707573. |
35 | ZHANG K, PARK M, ZHOU L, et al. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries[J]. Advanced Functional Materials, 2016, 26(37): 6728-6735. |
36 | TANG C, WEI X, CAI X, et al. ZnSe microsphere/multiwalled carbon nanotube composites as high-rate and long-life anodes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19626-19632. |
37 |
ZHOU P, ZHANG M, WANG L, et al. Synthesis and electrochemical performance of ZnSe electrospinning nanofibers as an anode material for lithium ion and sodium ion batteries[J]. Frontiers in Chemistry, 2019, doi: 10.3389/fchem.2019.00569.
doi: 10.3389/fchem.2019.00569 |
38 | FANG G, WANG Q, ZHOU J, et al. Metal organic framework-templated synthesis of bimetallic selenides with rich phase boundaries for sodium-ion storage and oxygen evolution reaction[J]. ACS Nano, 2019, 13(5): 5635-5645. |
39 | ZHANG S, AI Y, WU S, et al. 3D CoMoSe4 nanosheet arrays converted directly from hydrothermally processed CoMoO4 nanosheet arrays by plasma-assisted selenization process toward excellent anode material in sodium-ion battery[J]. Nanoscale Research Letters, 2019, 14(1): doi: 10.1186/S1167-019-3035-6. |
[1] | ZHANG Haoran, CHE Haiying, GUO Kaiqiang, SHEN Zhan, ZHANG Yunlong, CHEN Hangda, ZHOU Huang, LIAO Jianping, LIU Haimei, MA Zifeng. Preparation of Sn-doped NaNi1/3Fe1/3Mn1/3-x Sn x O2 cathode materials and their electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1874-1882. |
[2] | ZHAO Yifei, YANG Zhendong, LI Feng, XIE Zhaojun, ZHOU Zhen. Nitrogen-doped carbon-coated Na3V2 (PO4 ) 2F3 cathode materials for sodium-ion batteries: Preparation and electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1883-1891. |
[3] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[4] | Dewang SUN, Bizhi JIANG, Tao YUAN, Shiyou ZHENG. Research progress of titanium niobium oxide used as anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2127-2143. |
[5] | Qiang CHEN, Min LI, Jingfa LI. Application of Prussian blue analogs and their derivatives in potassium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. |
[6] | Tenghui WANG, Guo CHEN, Xuelin YANG. Review of preparations of amorphous nanostructured silicon powder [J]. Energy Storage Science and Technology, 2021, 10(2): 440-447. |
[7] | Xuejiao NIE, Jinzhi GUO, Meiyi WANG, Zhenyi GU, Xinxin ZHAO, Xu YANG, Haojie LIANG, Xinglong WU. Using spent lithium manganate to prepare Li0.25Na0.6MnO2 as cathode material in sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1402-1409. |
[8] | Wei ZHENG, Qiong LIU, Zhouguang LU. Modulating anionic redox reaction in layered transition metal oxides for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1416-1427. |
[9] | Mengying MA, Huilin PAN, Yongsheng HU. Progress in electrolyte research for non-aqueous sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1234-1250. |
[10] | Siyu ZHOU, Zheng TANG, Jingrui FAN, Yougen TANG, Dan SUN, Haiyan WANG. Research progress of transition metal oxide micro-nano structured arrays for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1383-1395. |
[11] | Xiaohui ZHU, Yuhang ZHUANG, Yang ZHAO, Mingzhu NI, Jing XU, Hui XIA. Development of layered cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1340-1349. |
[12] | MA Tengfei, MA Chao, SUN Rui, JI Hongmei, YANG Gang. Freeze-drying assisted synthesis of mno/reduced graphene composite and the improved rate cyclic performance for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1044-1051. |
[13] | ZHOU Junhua, LUO Fei, CHU Geng, LIU Bonan, LU Hao, ZHENG Jieyun, LI Hong, HUANG Xuejie, CHEN Liquan. Research progress on nano silicon-carbon anode materials for lithium ion battery [J]. Energy Storage Science and Technology, 2020, 9(2): 569-582. |
[14] | LI Zhendong, WANG Zhenhua, ZHANG Shilong, FU Chunlin. Research progress of MOFs and its derivatives as electrode materials for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(1): 18-24. |
[15] | LIU Xingwen, HE Jinxin, WANG Hailin, JIN Chengyou, MIAO Yonghua, XUE Chi. Preparation and electrochemical performance of F-doped SiO@C composite material [J]. Energy Storage Science and Technology, 2019, 8(S1): 56-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||