Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (1): 32-46.doi: 10.12028/j.issn.2095-4239.2018.0125
Previous Articles Next Articles
GUO Shen1, WANG Peng2, ZHANG Jichuan2, LUAN Wenpeng2, YU Jie3, HE Zhizhu3
Received:
2018-07-22
Revised:
2018-09-12
Online:
2019-01-01
Published:
2019-01-01
CLC Number:
GUO Shen, WANG Peng, ZHANG Jichuan, LUAN Wenpeng, YU Jie, HE Zhizhu. An overview of electromagnetic energy collection and storage technologies for a high voltage transmission system[J]. Energy Storage Science and Technology, 2019, 8(1): 32-46.
[1] RODRIGUEZ J. Electric field energy harvesting from medium voltage power lines[D]. Melbaurne:RMIT University, 2017. [2] GUO F, HAYAT H, WANG J. Energy harvesting devices for high voltage transmission line monitoring[C]//Power and Energy Society General Meeting, 2011 IEEE. IEEE, 2011:1-8. [3] 王晓文, 张晓. 输电线路在线监测系统供电电源探讨[J]. 电工技术, 2017(4):75-77. [4] 周健瑶. 结合超级电容和锂电池的电流互感器取能电源研究[D]. 重庆:重庆大学, 2014. ZHOU Jianyao. Study on the current transformer energy-absorbing source combined with super capacitor and lithium battery[D]. Chongqing:Chongqing University, 2014. [5] 陈常涛. 高压CT在线取能装置的优化分析与实现[D]. 济南:山东大学, 2017. CHEN Changtao. Optimization analysis and realization of high voltage CT online power collection device[D]. Jinan:Shandong University, 2017. [6] 于文斌, 何青连, 刘堃, 等. 一种基于交流电流源取能电源的设计技术[J]. 电器与能效管理技术, 2017(09):37-40. YU Wenbin, HE Qinglian, LIU Kun, et al. A design technology of ct enorgy-obtaining source based on AC power supply[J]. Electrical & Energy Management Technology, 2017(09):37-40. [7] 宋道军. 电流互感器的建模及其在输电线路取能电源中的应用[D]. 重庆:重庆大学, 2012. SONG Daojun. CT modeling and its application in draw-out power supply of transmission-line[D]. Chongqing:Chongqing University, 2012. [8] 康荣波, 林瀚伟, 杨明发. 中高压电气设备在线监测装置供电技术综述[J]. 电器与能效管理技术, 2016(6):1-7. KANG Rongbo, LIN Hanwei, YANG Mingfa. Review on power supply technology for on-line monitoring device of middle and high voltage electrical equipment[J]. Low Voltage Apparatus, 2016(6):1-7. [9] 张露. 电力电缆测温系统取能电源设计研究[D]. 哈尔滨:哈尔滨工业大学, 2012. ZHANG Lu. Design of draw-out power supply on power cable temperature measurement system[D]. Harbin:Harbin Institute of Technology, 2012. [10] 龚贤夫, 周浩, 戴攀, 等. 一种输电线路大功率取能电源的设计[J]. 电力系统保护与控制, 2012(3):124-128+134. [11] 王玮, 贾明娜, 张新慧, 等. 一种电子式电流互感器的高压侧设计[J]. 自动化仪表, 2016, 37(1):81-84. WANG Wei, JIA Mingna, ZHANG Xinhui, et al. Design of the high voltage side for electronic current transformer[J]. Process Automation Instrumentation, 2016, 37(1):81-84. [12] 王黎明, 李海东, 陈昌龙, 等. 新型高压输电线路低下限死区大功率在线取能装置[J]. 高电压技术, 2014, 40(2):344-352. WANG Liming, LI Haidong, CHEN Changlong, et al. A novel online energy extracting device with low lower limit deadband on transmission line[J]. High Voltage Engineering, 2014, 40(2):344-352. [13] 赵强松, 叶永强, 徐国峰, 等. 一种适用于小电流母线的电子式电流互感器供电电源[J]. 电力系统自动化, 2015(19):121-125. ZHAO Qiangsong, YE Yongqiang, XU Guofeng, et al. Power supply of electronic current transformer for power bus with low current[J]. Automation of Electric Power Systems, 2015(19):121-125. [14] LI P, WEN Y, ZHANG Z, et al. A high-efficiency management circuit using multiwinding upconversion current transformer for power-line energy Harvesting[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10):6327-6335. [15] 张立洪. 高压侧感应电源的研究与设计[D]. 秦皇岛:燕山大学, 2013. [16] 焦斌亮, 付伟, 赵德功. 高压输电线路CT取能电源的设计[J]. 电源技术, 2013, 37(1):130-133. JIAO Binliang, FU Wei, ZHAO Degong. Design for CT energy-getting power of high voltage transmission line[J]. Journal of Power Source, 2013, 37(1):130-133. [17] WU Z, WEN Y, LI P. A power supply of self-powered online monitoring systems for power cords[J]. IEEE Transactions on Energy Conversion, 2013, 28(4):921-928. [18] LIU Y, XIE X, HU Y, et al. A novel high-density power energy harvesting methodology for transmission line online monitoring devices[J]. Review of Scientific Instruments, 2016, 87(7):653-663. [19] LI P, WEN Y, ZHANG Z, et al. A high-efficiency management circuit using multiwinding upconversion current transformer for power-line energy harvesting[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10):6327-6335. [20] 李衍川, 江和. 新型高压侧自供电电源设计与研究[J]. 电工电能新技术, 2014(8):77-80. LI Yanchuan, JIANG He. New energy management circuit applied in electric self-power supply over high voltage side[J]. Advanced Technology of Electrical Engineering and Energy, 2014(8):77-80. [21] 武可, 王静丽, 陈晓瑞, 等. 高压侧电容取能电源的研究[J]. 电气工程学报, 2014(6):54-56. [22] 赵东生, 戴栋, 李立浧, 等. 变压器的阻抗变换特性在交流输电线路杆塔侧电场能采集中的应用[J]. 高电压技术, 2015, 41(12):3967-3972. ZHAO Dongsheng, DAI Dong, LI Licheng, et al. Electric field energy harvesting around AC transmission line using impedance conversion of transformer[J]. High Voltage Engineering, 2015, 41(12):3967-3972. [23] 赵东生, 戴栋, 邓红雷, 等. 交流输电线路杆塔侧的电势能采集可行性研究[J]. 华南理工大学学报(自然科学版), 2015(4):119-125. ZHAO Dongsheng, DAI Dong, DENG Honglei, et al. Feasibility study on energy harvesting around AC transmission line based on electric potential[J]. Journal of South China University of Technology (Natural Science Edition), 2015(4):119-125. [24] ZHANG J, LI P, WEN Y, et al. A management circuit with upconversion oscillation technology for electric-field energy harvesting[J]. IEEE Transactions on Power Electronics, 2016, 31(8):5515-5523. [25] 李衍川, 江和. 大电流下的电磁能量收集技术研究[J]. 电气开关, 2013, 51(4):52-55. LI Yanchuan, JIANG He. Research on electromagnetic energy collection around the high current[J]. Electric Switcher, 2013, 51(4):52-55. [26] MOGHE R, YANG Y, LAMBERT F, et al. A scoping study of electric and magnetic field energy harvesting for wireless sensor networks in power system applications[C]//Energy Conversion Congress and Exposition, ECCE 2009, 2009:3550-3557. [27] 刘祥建, 陈仁文. 压电振动能量收集装置研究现状及发展趋势[J]. 振动与冲击, 2012, 31(16):169-176. LIU Xiangjian, CHEN Renwen. Current situation and developing trend of piezoelectric vibration energy harvesters[J]. Journal of Vibration and Shock, 2012, 31(16):169-176. [28] 孟爱华, 杨剑锋, 蒋孙权, 等. 柱棒式超磁致伸缩能量收集器的设计与实验[J]. 振动与冲击, 2017, 36(12):175-180. MENG Aihua, YANG Jianfeng, JIANG Sunquan, et al. Design and experiments of a column giant magnetostrictive energy harvester[J]. Journal of Vibration and Shock, 2017, 36(12):175-180. [29] 刘成龙. 基于超磁致伸缩材料的能量收集装置研究[D]. 杭州:杭州电子科技大学, 2015. [30] 宋博, 何青, 费立凯. 微型电磁式能量采集器的设计与仿真[J]. 环境保护与循环经济, 2012(11):39-43. [31] PARK J C, BANG D H, PARK J Y. Micro-fabricated electromagnetic power generator to scavenge low ambient vibration[J]. IEEE Transactions on Magnetics, 2010, 46(6):1937-1942. [32] HAN J, HU J, YANG Y, et al. A nonintrusive power supply design for self-powered sensor networks in the smart grid by scavenging energy from AC power line[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7):4398-4407. [33] 张帅. 新型电磁型振动能量收集装置的设计与研究[D]. 杭州:浙江工业大学, 2015. ZHANG Shuai. Design and study of the novel electromagnetic vibration energy harvester[D]. Hangzhou:Zhejiang Universty of Technology, 2015. [34] TRICHES M, WANG F, CROVETTO A, et al. A MEMS energy harvesting device for vibration with low acceleration[J]. Procedia Engineering, 2012, 47(7):770-773. [35] WU H H, BOYS J T, COVIC G A. An AC processing pickup for IPT systems[J]. IEEE Transactions on Power Electronics, 2010, 25(5):1275-1284. [36] BUDHIA M, COVIC G, BOYS J. A new IPT magnetic coupler for electric vehicle charging systems[C]//IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society. IEEE, 2010:2487-2492. [37] 聂一雄, 牛如明, 陈逸鹏, 等. 一种新型高压侧在线监测工作电源的研究[J]. 高压电器, 2014(1):47-51. [38] ZHUANG Y, XU C, YUAN S, et al. An improved energy harvesting system on power transmission lines[C]//Wireless Power Transfer Conference. IEEE, 2017:1-3. [39] 李先志, 杜林, 陈伟根, 等. 输电线路状态监测系统取能电源的设计新原理[J]. 电力系统自动化, 2008, 32(1):76-80. [40] 梁明, 马鹤楼, 陈海彬, 等. 高压电磁感应取能通信电源的研制[J]. 电气应用, 2010(21):34-36. [41] 唐磊. 基于电磁感应的家用电线能量采集装置的设计[D]. 武汉:华中科技大学, 2015. [42] TASHIRO K, WAKIWAKA H, INOUE S, et al. Energy harvesting of magnetic power-line noise[J]. IEEE Transactions on Magnetics, 2011, 47(10):4441-4444. [43] TASHIRO K, WAKIWAKA H, UCHIYAMA Y. Consideration of array module design for energy harvesting of power-line magnetic noise[J]. Materials Science Forum, 2012, 721:191-198. [44] TASHIRO K, WAKIKAWA H, UCHIYAMA Y. Loss measurement in power conditioning module for power-line magnetic noise energy harvesting device[C]//The 20th MAGDA Conference in Pacific Asia (MAGDA2011)), 2012, 20:440-445 [45] CHEON S, KIM Y H, KANG S Y, et al. Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances[J]. IEEE Transactions on Industrial Electronics, 2011, 58(7):2906-2914. [46] SALLÁN J, VILLA J L, LLOMBART A, et al. Optimal design of ICPT systems applied to electric vehicle battery charge[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6):2140-2149. [47] VILLA J L, SALLAN J, OSORIO J F S, et al. High-misalignment tolerant compensation topology for ICPT systems[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2):945-951. [48] 高键鑫, 吴旭升, 高嵬, 等. 电磁感应式非接触电能传输技术研究综述[J]. 电源学报, 2017, 15(2):166-178. [49] 陈志勇. 基于磁耦合无线传输电源的研究[D]. 哈尔滨:哈尔滨理工大学, 2013. [50] 聂一雄, 牛如明, 陈逸鹏, 等. 一种新型高压侧在线监测工作电源的研究[J]. 高压电器, 2014(1):47-51. [51] WANG W, HUANG X, TAN L, et al. Optimization design of an inductive energy harvesting device for wireless power supply system overhead high-voltage power lines[J]. Energies, 2016, 9(4):242. [52] WANG Z, HU J, HAN J, et al. A novel high-performance energy harvester based on nonlinear resonance for scavenging power-frequency magnetic energy[J]. IEEE Transactions on Industrial Electronics, 2017(99):1-1. [53] ZHAO X, KEUTEL T, BALDAUF M, et al. Energy harvesting for overhead power line monitoring[C]//International Multi-Conference on Systems, Signals and Devices. IEEE, 2012:1-5. [54] JOLANI F, YU Y Q, CHEN Z. A planar magnetically-coupled resonant wireless power transfer using array of resonators for efficiency enhancement[C]//Microwave Symposium. IEEE, 2015:1-4. [55] OODACHI N, OGAWA K, KUDO H, et al. Efficiency improvement of wireless power transfer via magnetic resonance using transmission coil array[C]//IEEE International Symposium on Antennas and Propagation. IEEE, 2011:1707-1710. [56] RAMRAKHYANI A K, MIRABBASI S, MU C. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants[J]. IEEE Transactions on Biomedical Circuits & Systems, 2011, 5(1):48. [57] 林先其, 许冬冬, 曾姜杰, 等. 微波输能技术的研究进展及发展趋势分析[J]. 南京信息工程大学学报(自然科学版), 2017, 9(1):34-45. [58] 王维. 高压输电线路在线监测设备无线供能关键技术研究及系统优化设计[D]. 南京:东南大学, 2017. [59] 李灿. 超高压输电线路下人体电磁感应研究[D]. 济南:山东大学, 2015. [60] KARMOKAR D K, ESSELLE K P, HAY S G. Fixed-frequency beam steering of microstrip leaky-wave antennas using binary switches[J]. IEEE Transactions on Antennas & Propagation, 2016, 64(6):2146-2154. [61] YURDUSEVEN O, JUAN N L, NETO A. A dual-polarized leaky lens antenna for wideband focal plane arrays[J]. IEEE Transactions on Antennas & Propagation, 2016, 64(8):3330-3337. [62] HEEBL J D, ETTORRE M, GRBIC A. Wireless links in the radiative near field via bessel beams[J]. Phys. Rev. Applied, 2016, 6(3):doi:10. 1103/physRevApplied.6.034018. [63] STRASSNER B, CHANG K. Microwave power transmission:Historical milestones and system components[J]. Proceedings of the IEEE, 2013, 101(6):1379-1396. [64] SIMIC M, BIL C, VOJISAVLJEVIC V. Investigation in wireless power transmission for UAV charging[J]. Procedia Computer Science, 2015, 60(1):1846-1855. [65] 李玉红. 移动物体微波无线供电系统研究[D]. 唐山:华北理工大学, 2017. [66] ZHOU H W, YANG X X. Aperture optimization of transmitting antennas for microwave power transmission systems[C]//Antennas and Propagation Society International Symposium. IEEE, 2014:1357-1358. [67] 卢萍. 微波输能系统的电磁波能量聚焦及高性能整流天线研究[D]. 成都:电子科技大学, 2018. [68] 王旭东. 架空输电线路在线监测装置光纤供电系统设计[D]. 太原:太原理工大学, 2016. [69] MATSUURA M, FURUGORI H, SATO J. 60 W power-over-fiber feed using double-clad fibers for radio-over-fiber systems with optically powered remote antenna units[J]. Optics Letters, 2015, 40(23):5598-5601. [70] WANG J, WAN H, XU J. Fiber-wireless sensor system based on a power-over-fiber technique[J]. Optical Engineering, 2015, 55(3):doi:10.1117/1.0E.55.3.031104. [71] 何友忠. 高压在线监测设备供电电源的研究[D]. 重庆:重庆大学, 2011. [72] 许鹏. 高压输电线路电流状态监测及供能研究[D]. 武汉:华中科技大学, 2012. [73] 毕亭亭. 高压输配电线路在线取能装置的研究与设计[D]. 保定:华北电力大学, 2016. [74] WANG W, HUANG X, TAN L, et al. Optimization design of an inductive energy harvesting device for wireless power supply system overhead high-voltage power lines[J]. Energies, 2016, 9(4):doi:10.3390/en9040242. [75] 王维. 高压输电线路在线监测设备无线供能关键技术研究及系统优化设计[D]. 南京:东南大学, 2017. [76] YANG F, DU L, CHEN W, et al. Hybrid energy harvesting for condition monitoring sensors in power grids[J]. Energy, 2017, 118:435-445. [77] LIU H, WEI Z, HE W, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems:A review[J]. Energy Conversion & Management, 2017, 150:304-330. [78] ZHAO Q, QIN X, ZHAO H, et al. A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries[J]. Microelectronics Reliability, 2018, 85:99-108. [79] ANTÓN J C, NIETO P J, VIEJO C B, et al. Support vector machines used to estimate the battery state of charge[J]. IEEE Transactions on Power Electronics, 2013, 28(12):5919-5926. [80] ANTÓN J C, NIETO P J, JUEZ F J, et al. Battery state-of-charge estimator using the MARS technique[J]. IEEE Transactions on Power Electronics, 2013, 28(8):3798-3805. [81] CHANG W Y. Estimation of the state of charge for a LFP battery using a hybrid method that combines a RBF neural network, an OLS algorithm and AGA[J]. International Journal of Electrical Power & Energy Systems, 2013, 53(53):603-611. [82] XING Y, MA E W, TSUI K L, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries[J]. Microelectronics Reliability, 2013, 53(6):811-820. [83] WANG D, MIAO Q, PECHT M. Prognostics of lithium-ion batteries based on relevance vectors and a conditional three-parameter capacity degradation model[J]. Journal of Power Sources, 2013, 239(10):253-264. [84] LIU D, PANG J, ZHOU J, et al. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression[J]. Microelectronics Reliability, 2013, 53(6):832-839. [85] SÁNCHEZ L, COUSO I, GONZÁLEZ M. A design methodology for semi-physical fuzzy models applied to the dynamic characterization of LiFePO4, batteries[J]. Applied Soft Computing, 2014, 14(1):269-288. [86] YE X, ZHAO Y, QUAN Z. Thermal management system of lithium-ion battery module based on micro heat pipe array[J]. International Journal of Energy Research, 2018, doi:10.1016/j. applthermaleng.2018.09.108. [87] LEI Z, ZHANG Y, LEI X. Temperature uniformity of a heated lithium-ion battery cell in cold climate[J]. Applied Thermal Engineering, 2018, doi:10.1016/j.applthermaleng.2017.09.100. [88] LEI Z, ZHANG Y, LEI X. Improving temperature uniformity of a lithium-ion battery by intermittent heating method in cold climate[J]. International Journal of Heat & Mass Transfer, 2018, 121:275-281. [89] LI J, SHI Q, SHAO Y, et al. Cladding nanostructured AgNWs-MoS2, electrode material for high-rate and long-life transparent in-plane micro-supercapacitor[J]. Energy Storage Materials, 2019:doi:10.1016/j.ensm.2018.05.013. [90] FLEISCHMANN S, WIDMAIER M, SCHREIBER A, et al. High voltage asymmetric hybrid supercapacitors using lithium-and sodium-containing ionic liquids[J]. Energy Storage Materials, 2019:doi:10.1016/j.ensm.2018.06.011. [91] CHEN Y, LIU Z, SUN L, et al. Nitrogen and sulfur co-doped porous graphene aerogel as an efficient electrode material for high performance supercapacitor in ionic liquid electrolyte[J]. Journal of Power Sources, 2018, 390:215-223. |
[1] | ZHAO Xiaoting, CHU Jiangwei, YUAN Shankun, GUAN Xiangyuan. Analysis of a two-stage flywheel unit for automobile braking energy recovery [J]. Energy Storage Science and Technology, 2019, 8(3): 567-574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||