Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (1): 47-57.doi: 10.12028/j.issn.2095-4239.2018.0114
Previous Articles Next Articles
LIU Yongkun1,2,3, YAO Juming1,2,4, LU Qiuling4, HUANG Zheng4, JIANG Guohua1,2,3,4
Received:
2018-07-05
Revised:
2018-08-20
Online:
2019-01-01
Published:
2018-08-28
CLC Number:
LIU Yongkun, YAO Juming, LU Qiuling, HUANG Zheng, JIANG Guohua. Progress in carbon fibers based flexible electrodes for supercapacitors[J]. Energy Storage Science and Technology, 2019, 8(1): 47-57.
[1] WEI X J, WAN S G, JIANG X Q, et al. Peanut-shell-like porous carbon from nitrogen-containing poly-n-phenylethanolamine for high performance supercapacitor[J]. ACS Appl. Mater. Interfaces, 2015, 7(40):22238-22245. [2] XU K B, LI W Y, LIU Q, et al. Hierarchical mesoporous NiCo2O4@MnO2 core-shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors[J]. J. Mater. Chem. A, 2014, 2(13):4795-4802. [3] ZHANG Y D, LIN B P, SUN Y, et al. Carbon nanotubes@metal-organic frameworks as Mn-based symmetrical supercapacitor electrodes for enhanced charge storage[J]. RSC Adv., 2015, 5(72):58100-58106. [4] ZHOU H H, ZHAI H J, HAN G Y. Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly(3,4-ethylenedioxythiophene)-carbon nanotubes[J]. J. Power Sources, 2016, 323:125-133. [5] RAJ C J, KIM B C, CHO W J, et al. Highly flexible and planar supercapacitors using graphite flakes/polypyrrole in polymer lapping film[J]. ACS Appl. Mater. Interfaces, 2015, 7(24):13405-13414. [6] ZHAI Y P, DOU Y Q, ZHAO D Y, et al. Carbon materials for chemical capacitive energy storage[J]. Adv. Mater., 2011, 23(42):4828-4850. [7] WANG G P, ZHANG L, ZHANG J J. A review of electrode materials for electrochemical supercapacitors[J]. Chem. Soc. Rev., 2012, 41(2):797-828. [8] LIM L, LIU Y S, LIU W W, et al. All-in-one graphene based composite fiber:Toward wearable supercapacitor[J]. ACS Appl. Mater. Interfaces, 2017, 9(45):39576-39583. [9] XU C, LI Z H, YANG C, et al. An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors[J]. Adv. Mater., 2016, 28(21):4105-4110. [10] DONG L B, XU C J, LI Y, et al. Flexible electrodes and supercapacitors for wearable energy storage:A review by category[J]. J. Mater. Chem. A, 2016, 4(13):4659-4685. [11] WEN L, LI F, CHENG H M, Carbon nanotubes and graphene for flexible electrochemical energy storage:From materials to devices[J]. Adv. Mater., 2016, 28(22):4306-4337. [12] WANG X F, LU X H, LIU B, et al. Flexible energy-storage devices:Design consideration and recent progress[J]. Adv. Mater., 2014, 26(28):4763-4782. [13] YU D D, WANG H, YANG J, et al. Dye wastewater clean up by graphene composite paper for tailorable supercapacitors[J]. ACS Appl. Mater. Interfaces, 2017, 9(25):21298-21306. [14] RADHAMANI A V, SHAREEF K M, RAMACHANDA RAO M S. ZnO@MnO2 core-shell nanofiber cathodes for high performance asymmetric supercapacitors[J]. ACS Appl. Mater. Interfaces, 2016, 8(44):30531-30542. [15] LEE G, SEO Y D, JANG J, ZnO quantum dot-decorated carbon nanofibers derived from electrospun ZIF-8/PVA nanofibers for high-performance energy storage electrodes[J]. Chem. Commun., 2017, 53(83):11441-11444. [16] WANG X F, LIU B, LIU R, et al. Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system[J]. Angew. Chem. Int. Ed., 2014, 53(7):1849-1853. [17] CHEN H, HU L F, CHEN M, et al. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials[J]. Adv. Funct. Mater., 2014, 24(7):934-942. [18] SHEN L F, WANG J, XU G Y, et al. NiCo2S4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors[J]. Adv. Energy Mater., 2015, 5(3):doi:10.1002/aenm.201400977. [19] CHEE W K, LIM H N, HARRISON I, et al. Performance of flexible and binderless polypyrrole/graphene oxide/zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration[J]. Electrochim. Acta, 2015, 157:88-94. [20] WU S X, HUI K S, HUI K N, et al. Electrostatic-induced assembly of graphene-encapsulated carbon@nickel-aluminum layered double hydroxide core-shell spheres hybrid structure for high-energy and high-power-density asymmetric supercapacitor[J]. ACS Appl. Mater. Interfaces, 2017, 9(2):1395-1406. [21] CHOI C, SIM H J, SPINKS G M, et al. Elastomeric and dynamic MnO2/CNT core-shell structure coiled yarn supercapacitor[J]. Adv. Energy Mater., 2016, 6(5):doi:10.1002/aenm.201502119. [22] JOST K, DURKIN D P, HAVERHALS L M, et al. Natural fiber welded electrode yarns for knittable textile supercapacitors[J]. Adv. Energy Mater., 2015, 5(4):doi:10.1002/aenm.201401286. [23] KIM B C, HONG J Y, WALLACE G G, et al. Recent progress in flexible electrochemical capacitors:Electrode materials, device configuration, and functions[J]. Adv. Energy Mater., 2015, 5(22):doi:10.1002/aenm.201500959. [24] TANG J Y, YUAN P, CAI C L, et al. Combining nature-inspired, graphene-wrapped flexible electrodes with nanocomposite polymer electrolyte for asymmetric capacitive energy storage[J]. Adv. Energy Mater., 2016, 6(19):doi:10.1002/aenm.201600813. [25] VLAD A, SINGH N, GALANDE C, et al. Design considerations for unconventional electrochemical energy storage architectures[J]. Adv. Energy Mater., 2015, 5(19):doi:10.1002/aenm.201402115. [26] PENG L L, ZHU Y, LI H S, et al. Chemically integrated inorganic-graphene two-dimensional hybrid materials for flexible energy storage devices[J]. Small, 2016, 12(45):6183-6199. [27] XUE Q, SUN J F, HUANG Y, et al. Recent progress on flexible and wearable supercapacitors[J]. Small, 2017, 13(45):doi:10.1002/smll.201701827. [28] CAI J G, LV C, WATANABE A. Laser direct writing of high-performance flexible all-solid-state carbon micro-supercapacitors for an on-chip self-powered photodetection system[J]. Nano Energy, 2016, 30:790-800. [29] LI F W, CHEN J T, WANG X S, et al. Stretchable supercapacitor with adjustable volumetric capacitance based on 3D interdigital electrodes[J]. Adv. Funct. Mater., 2015, 25(29):4601-4606. [30] WENG W, WU Q Q, SUN Q, et al. Failure mechanism in fiber-shaped electrodes for lithium-ion batteries[J]. J. Mater. Chem. A, 2015, 3(20):10942-10948. [31] CHEN Y, LU S T, WU X H, et al. Flexible carbon nanotube-graphene/sulfur composite film:Free-standing cathode for high-performance lithium/sulfur batteries[J]. J. Phy. Chem. C, 2015, 119(19):10288-10294. [32] LIU Y, ZHOU J Y, CHEN L L, et al. Highly flexible freestanding porous carbon nanofibers for electrodes materials of high-performance all-carbon supercapacitors[J]. ACS Appl. Mater. Interfaces, 2015, 7(42):23515-23520. [33] WANG W, LIU W Y, ZENG Y X, et al. A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth[J]. Adv. Mater., 2015, 27(23):3572-3578. [34] WEN J, LI S Z, ZHOU K, et al. Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni3S2 nanorod array and pen ink electrodes[J]. J. Power Sources, 2016, 324:325-333. [35] LAI F L, MIAO Y E, HUANG Y P, et al. Flexible hybrid membranes of NiCo2O4-doped carbon nanofiber@MnO2 core-sheath nanostructures for high-performance supercapacitors[J]. J. Phy. Chem. C, 2015, 119(24):13442-13450. [36] WU Y, RAN F, Vanadium nitride quantum dot/nitrogen-doped microporous carbon nanofibers electrode for high-performance supercapacitors[J]. J. Power Sources, 2017, 344:1-10. [37] LEI Q, SONG H H, CHEN X H, et al. Effects of graphene oxide addition on the synthesis and supercapacitor performance of carbon aerogel particles[J]. RSC Adv., 2016, 6(47):40683-40690. [38] REDONDO E, CARRETERO GONZALEZ J, GOIKOLEA E, et al. Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits[J]. Electrochim. Acta, 2015, 160:178-184. [39] ZHANG L L, ZHOU R, ZHAO X S. Graphene-based materials as supercapacitor electrodes[J]. J. Mater. Chem., 2010, 20(29):5983-5992. [40] TANG L, DUAN F, CHEN M Q. Silver nanoparticles decorated polyaniline/multiwalled super-short carbon nanotubes nanocomposite for supercapacitor application[J]. RSC Adv., 2016, 6(69):65012-65019. [41] XIA X H, TU J P, MAI Y J, et al. Graphene sheet/porous NiO hybrid film for supercapacitor applications[J]. Chem-Eur J., 2011, 17(39):10898-10905. [42] TIAN X Q, CHENG C M, QIAN L, et al. Microwave-assisted non-aqueous homogenous precipitation of nanoball-like mesoporous α-Ni(OH)2 as a precursor for NiOx and its application as a pseudocapacitor[J]. J. Mater. Chem., 2012, 22(16):8029-8035. [43] GAO Z H, ZHANG H, CAO G P, et al. Spherical porous VN and NiOx, as electrode materials for asymmetric supercapacitor[J]. Electrochim. Acta, 2013, 87(1):375-380. [44] LIU Y C, MIAO X F, FANG J H, et al. Layered-MnO2 nanosheet grown on nitrogen-doped graphene template as a composite cathode for flexible solid-state asymmetric supercapacitor[J]. ACS Appl. Mater. Interfaces, 2016, 8(8):5251-5260. [45] FOO C Y, SUMBOJA A, TAN D J H, et al. Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices[J]. Adv. Energy Mater., 2015, 4(12):3412-3420. [46] SARAVANAKUMAR B, PURUSHOTHAMAN K K, MURALIDHARAN G. High performance supercapacitor based on carbon coated V2O5, nanorods[J]. J. Electroanal. Chem., 2015, 758:111-116. [47] ZHANG Y F, JING X Y, WANG Q S, et al. Three-dimensional porous V2O5 hierarchical spheres as a battery-type electrode for a hybrid supercapacitor with excellent charge storage performance[J]. Dalton T., 2017, 46(43):15048-15058. [48] LIU T Y, FINN L, YU M H, et al. Polyaniline and polypyrrole pseudocapacitor electrodes with excellent cycling stability[J]. Nano Lett., 2014, 14(5):2522-2527. [49] HUANG Z H, SONG Y, XU X X, et al. Ordered polypyrrole nanowire arrays grown on carbon cloth substrate for high performance pseudocapacitor electrode[J]. ACS Appl. Mater. Interfaces, 2015, 7(45):25506-25513. [50] BORA C, SARKAR C, MOHAN K J, et al. Polythiophene/graphene composite as a highly efficient platinum-free counter electrode in dye-sensitized solar cells[J]. Electrochim. Acta, 2015, 157:225-231. [51] PATIL S S, DUBAL D P, DEONIKAR V G, et al. Fern-like rGO/BiVO4 hybrid nanostructures for high-energy symmetric supercapacitor[J]. ACS Appl. Mater. Interfaces, 2016, 8(46):31602-31610. [52] ZUO W H, LI R Z, ZHOU C, et al. Battery-supercapacitor hybrid devices:Recent progress and future prospects[J]. Adv. Sci., 2017, 4(7):doi:10.1002/advs.201600539. [53] ZHANG C Q, CHEN Q D, ZHAN H B. Supercapacitors based on reduced graphene oxide nanofibers supported Ni(OH)2 nanoplates with enhanced electrochemical performance[J]. ACS Appl. Mater. Interfaces, 2016, 8(35):22977-22987. [54] LIU Z M, ZHANG H Y, YANG Q, et al. Graphene/V2O5 hybrid electrode for an asymmetric supercapacitor with high energy density in an organic electrolyte[J]. Electrochim. Acta, 2018:doi:10.1016/j.electacta.2018.04.212. [55] LV T, YAO Y, LI N, et al. Highly stretchable supercapacitors based on aligned carbon nanotube/molybdenum disulfide composites[J]. Angew. Chem. Int. Ed., 2016, 55(32):9191-9195. [56] ZHOU W J, ZHOU K, LIU X J, et al. Flexible wire-like all-carbon supercapacitors based on porous core-shell carbon fibers[J]. J. Mater. Chem. A, 2014, 2(20):7250-7255. [57] LIU B, TAN D S, WANG X F, et al. Flexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect[J]. Small, 2013, 9(11):1998-2004. [58] TAO J Y, LIU N S, MA WEN Z, et al. Solid-state high performance flexible supercapacitors based on polypyrrole-MnO2-carbon fiber hybrid structure[J]. Sci. Rep., 2013, 7459(3):doi:10.1038/srepo2286. [59] LU X H, YU M H, WANG G M, et al. H-TiO2@MnO2//H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors[J]. Adv. Mater., 2013, 25(2):267-272. [60] WANG Z L, ZHU Z L, QIU Q H, et al. High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core-shell nanorods//specially reduced graphene oxide[J]. J. Mater. Chem. C, 2014, 2(7):1331-1336. [61] XIAO J W, WAN L, YANG S H, et al. Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors[J]. Nano Lett., 2014, 14(2):831-838. [62] ZHANG L S, DING Q W, HUANG Y P, et al. Flexible hybrid membranes with Ni(OH)2 nanoplatelets vertically grown on electrospun carbon nanofibers for high-performance supercapacitors[J]. ACS Appl. Mater. Interfaces, 2015, 7(40):22669-22677. [63] LU X F, CHEN X Y, ZHOU W, et al. α-Fe2O3@PANI core-shell nanowire arrays as negative electrodes for asymmetric supercapacitors[J]. ACS Appl. Mater. Interfaces, 2015, 7:14843-14850. [64] WANG D W, LIU S J, JIAO L, et al. A smart bottom-up strategy for the fabrication of porous carbon nanosheets containing rGO for high-rate supercapacitors in organic electrolyte[J]. Electrochim. Acta, 2017, 252:109-118. [65] KEUM K, LEE G, LEE H C, et al. Wire-shaped supercapacitors with organic electrolytes fabricated via layer-by-layer assembly[J]. ACS Appl. Mater. Interfaces, 2017, doi:10.1021/acsami.8b07113. [66] SONG Y, LIU T Y, YAO B, et al. Amorphous mixed-valence vanadium oxide/exfoliated carbon cloth structure shows a record high cycling stability[J]. Small, 2017, 13(16):doi:10.1002/smll.201700067. [67] LI Y, XU J, FENG T, et al. Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors[J]. Adv. Func. Mater., 2017, 27(14):doi:10.1002/adfm.201606728. [68] JABEEN N, HUSSAIN A, XIA Q Y, et al. High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays[J]. Adv. Mater., 2017, 29(32):doi:10.1002/adma.201700804. [69] HUANG J, WEI J C, XIAO Y B, et al. When Al-doped cobalt sulfide nanosheets meet nickel nanotube arrays:A highly efficient and stable cathode for asymmetric supercapacitors[J]. ACS Nano, 2018, 12:3030-3041. [70] HUANG Z H, SONG Y, FENG D Y, et al. High mass loading MnO2 with hierarchical nanostructures for supercapacitors[J]. ACS Nano, 2018, 12:3557-3567. [71] CHEN C, CAO J, LU Q, et al. Foldable all-solid-state supercapacitors integrated with photodetectors[J]. Adv. Funct. Mater., 2017, 27:doi:10.1002/adfm.201604639. [72] KONG D Z, REN W N, CHENG C W, et al. Three-dimensional NiCo2O4@polypyrrole coaxial nanowire arrays on carbon textiles for high-performance flexible asymmetric solid-state supercapacitor[J]. ACS Appl. Mater. Interfaces, 2015, 7(38):21334-21346. [73] CHEN W, XIA C, HUSAM N A. One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors[J]. ACS Nano, 2014, 8(9):9531-9541. [74] LIU Y K, LU Q L, HUANG Z, et al. Electrodeposition of Ni-Co-S nanosheet arrays on N-doped porous carbon nanofibers for flexible asymmetric supercapacitors[J]. J. Alloys Compd., 2018, 762:301-311. [75] DU J, ZHENG C, LV W, et al. A three-layer all-in-one flexible graphene film used as an integrated supercapacitor[J]. Adv. Mater. Interfaces, 2017, 4:doi:10.1002/admi.201700004. [76] XIE B, WANG Y, LAI W, et al. Laser-processed graphene based micro-supercapacitors for ultrathin, rollable, compact and designable energy storage components[J]. Nano Energy, 2016, 26:276-285. [77] XU Z, GAO C. Graphene in macroscopic order:Liquid crystals and wet-spun fibers[J]. Acc. Chem. Res., 2014, 47(4):1267-1276. [78] LI Z, XU Z, LIU Y J, et al. Multifunctional non-woven fabrics of interfused graphene fibers[J]. Nat. Commun., 2016, 7:doi:10.1038/ncommsl13684. [79] CHEN H, JIANG G H, YU W J, et al. Electrospun carbon nanofibers coated with urchin-like ZnCo2O4 nanosheets as a flexible electrode material[J]. J. Mater. Chem. A, 2016, 4(16):5958-5964. [80] SUN S Q, JIANG G H, LIU Y K, et al. Growth of MnO2, nanoparticles on hybrid carbon nanofibers for flexible symmetrical supercapacitors[J]. Mater. Lett., 2017, 197:35-37. [81] LIU Y K, JIANG G H, SUN S Q, et al. Growth of NiCo2S4 nanotubes on carbon nanofibers for high performance flexible supercapacitors[J]. J. Electroanal. Chem., 2017, 804:212-219. [82] LIU Y K, JIANG G H, SUN S Q, et al. Decoration of carbon nanofibers with NiCo2S4 nanoparticles for flexible asymmetric supercapacitors[J]. J. Alloys Compd., 2018, 731:560-568. [83] LI X Y, WANG J, ZHAO Y P, et al. Wearable solid-state supercapacitors operating at high working voltage with a flexible nanocomposite electrode[J]. ACS Appl. Mater. Interfaces, 2016, 8(39):25905-25914. [84] QIN T F, PENG S L, HAO J X, et al. Flexible and wearable all-solid-state supercapacitors with ultrahigh energy density based on a carbon fiber fabric electrode[J]. Adv. Energy Mater., 2017, 7(20):doi:10.1002/aenm.201700409. [85] AI Y F, LOU Z, LI L, et al. Meters-long flexible CoNiO2-nanowires@carbon-fibers based wire-supercapacitors for wearable electronics[J]. Adv. Mater. Technol., 2016, 1(8):doi:10.1012/admt. 201600142 [86] GUO R S, CHEN J T, YANG B J, et al. In-plane micro-supercapacitors for an integrated device on one piece of paper[J]. Adv. Func. Mater, 2017, 27(43):doi:10.1002/adfm.201702394. [87] HUANG Y, ZHONG M, SHI F K, et al. A polyacrylamide hydrogel electrolyte enabled intrinsically 1000% stretchable and 50% compressible supercapacitor[J]. Angew. Chem. Int. Ed., 2017, 56(31):9141-9145. |
[1] | Yuzuo WANG, Yinli LU, Miao DENG, Bin YANG, Xuewen YU, Ge JIN, Dianbo RUAN. Research progress of self-discharge in supercapacitors [J]. Energy Storage Science and Technology, 2022, 11(7): 2114-2125. |
[2] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[3] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[4] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[5] | Yuyu TIAN, Jing LIU, Xuefeng SONG, Yu QIU, Liping ZHAO, Peng ZHANG, Yanting SUN, Lian GAO. PPy-MoS2 porous network flexible electrodes: Kinetic analysis of electrochemical behavior [J]. Energy Storage Science and Technology, 2022, 11(4): 1141-1148. |
[6] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
[7] | Bowen YUE, Jiahuan TONG, Yuwen LIU, Feng HUO. Simulation calculation method and application of ionic liquid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(3): 897-911. |
[8] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[9] | Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA. Advances in battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. |
[10] | Xianrong ZHANG, Yujie XU, Lijun YANG, Lexuan LI, Haisheng CHEN, Xuezhi ZHOU. Performance analysis and comparison of multi-type thermal power-heat storage coupling systems [J]. Energy Storage Science and Technology, 2021, 10(5): 1565-1578. |
[11] | Yating LIU, Kai ZHANG, Yang XU. Research on synchronous damping around the critical bending speed of magnetic bearings [J]. Energy Storage Science and Technology, 2021, 10(5): 1656-1666. |
[12] | Kai WANG, Zhaoxia HOU, Siyao LI, Chenying QU, Yue WANG, Youjian KONG. Research progress of stretchable all-solid supercapacitors [J]. Energy Storage Science and Technology, 2021, 10(3): 887-895. |
[13] | Shuai CHEN, Ling CHEN, Hao JIANG. Nitrogen-doped amorphous vanadium oxide nanosheet arrays for rapid-charging quasi-solid asymmetric supercapacitors [J]. Energy Storage Science and Technology, 2021, 10(3): 945-951. |
[14] | Zhijie BI, Ning ZHAO, Xiangxin GUO. Electrochromic-supercapacitors based on tungsten oxide and prussian blue [J]. Energy Storage Science and Technology, 2021, 10(3): 952-957. |
[15] | Xiliang WANG, Wenfeng CUI, Kefeng TONG, Xuelong CHEN, Zhijun QIAO, Dianbo RUAN. Design and simulation of an integrated three-port converter for supercapacitor energy storage [J]. Energy Storage Science and Technology, 2021, 10(3): 1095-1102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||