Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (5): 1565-1578.doi: 10.19799/j.cnki.2095-4239.2021.0347
Previous Articles Next Articles
Xianrong ZHANG1,2(), Yujie XU2,3, Lijun YANG1, Lexuan LI2,3, Haisheng CHEN2,3(), Xuezhi ZHOU4()
Received:
2021-07-13
Revised:
2021-08-04
Online:
2021-09-05
Published:
2021-09-08
CLC Number:
Xianrong ZHANG, Yujie XU, Lijun YANG, Lexuan LI, Haisheng CHEN, Xuezhi ZHOU. Performance analysis and comparison of multi-type thermal power-heat storage coupling systems[J]. Energy Storage Science and Technology, 2021, 10(5): 1565-1578.
Table 3
Comparison of design value and simulated value of extraction steam volume of system under typical working conditions"
工况 | 抽汽编号 | 实际值/(kg·h-1) | 模拟值/(kg·h-1) | 相对误差/% |
---|---|---|---|---|
100%额定工况 | #1 | 131949 | 131949 | 0 |
#2 | 127543 | 127543 | 0 | |
#3 | 69404 | 69100 | -0.44 | |
#4 | 55332 | 54971 | -0.65 | |
#5 | 82023 | 82023 | 0 | |
#6 | 75662 | 75872 | 0.28 | |
#7 | 79202 | 79202 | 0 | |
50%额定工况 | #1 | 46839 | 46839 | 0 |
#2 | 48092 | 48092 | 0 | |
#3 | 26052 | 26052 | 0 | |
#4 | 23650 | 23421 | -0.97 | |
#5 | 35470 | 35470 | 0 | |
#6 | 33983 | 33983 | 0 | |
#7 | 22147 | 22147 | 0 | |
40%额定工况 | #1 | 35568 | 35568 | 0 |
#2 | 36489 | 36489 | 0 | |
#3 | 19357 | 19357 | 0 | |
#4 | 18667 | 18461 | -1.10 | |
#5 | 28090 | 28090 | 0 | |
#6 | 26841 | 26841 | 0 | |
#7 | 14208 | 14208 | 0 |
Table 4
Comparison of system thermal index and simulation value under typical working conditions"
工况 | 指标 | 实际值 | 模拟值 | 相对误差/% |
---|---|---|---|---|
100%额定工况 | 电功率/kW | 600185 | 600753.51 | 0.09 |
热耗率/[kJ·(kW·h)-1] | 8064 | 8068.66 | 0.06 | |
热效率/% | 40.58 | 40.56 | -0.04 | |
?效率/% | 39.94 | 39.92 | -0.04 | |
50%额定工况 | 电功率/kW | 300112 | 300480.89 | 0.12 |
热耗率/[kJ·(kW·h)-1] | 8653 | 8656.73 | 0.04 | |
热效率/% | 37.74 | 37.71 | 0.09 | |
?效率/% | 37.14 | 37.11 | 0.09 | |
40%额定工况 | 电功率/kW | 240058 | 240350.02 | 0.12 |
热耗率/[kJ·(kW·h)-1] | 8928 | 8932.84 | 0.05 | |
热效率/% | 36.46 | 36.46 | -0.01 | |
?效率/% | 35.88 | 35.88 | -0.01 |
1 | 国家能源局发布《2021年能源工作指导意见》[J]. 中国电力企业管理, 2021(12): 6.National Energy Administration issued "Guiding Opinions on Energy Work in 2021"[J]. China Electric Power Enterprise Management, 2021(12): 6. |
2 | XU X F, WEI Z F, JI Q, et al. Global renewable energy development: Influencing factors, trend predictions and countermeasures[J]. Resources Policy, 2019, 63: doi: 10.1016/j.resourpol.2019.101470. |
3 | KUBIK M L, COKER P J, BARLOW J F. Increasing thermal plant flexibility in a high renewables power system[J]. Applied Energy, 2015, 154: 102-111. |
4 | 王伟, 徐婧, 赵翔, 等. 中国煤电机组调峰运行现状分析[J]. 南方能源建设, 2017, 4(1): 18-24.WANG W, XU J, ZHAO X, et al. Analysis on peak load regulation status quo for coal-fired power plants in china[J]. Southern Energy Construction, 2017, 4(1): 18-24. |
5 | YAÏCI W, GHORAB M, ENTCHEV E, et al. Three-dimensional unsteady CFD simulations of a thermal storage tank performance for optimum design[J]. Applied Thermal Engineering, 2013, 60(1/2): 152-163. |
6 | 孙晓丽, 鹿院卫, 崔锡民, 等. 熔融盐单罐储热系统释热传热规律研究[J]. 工程热物理学报, 2016, 37(5): 1032-1037.SUN X L, LU Y W, CUI X M, et al. Heat discharge research of molten salt in single energy storage tank[J]. Journal of Engineering Thermophysics, 2016, 37(5): 1032-1037. |
7 | ZHANG H W, LIANG W B, LIU J Q, et al. Modeling and energy efficiency analysis of thermal power plant with high temperature thermal energy storage (HTTES)[J]. Journal of Thermal Science, 2020, 29(4): 1025-1035. |
8 | VERDA V, COLELLA F. Primary energy savings through thermal storage in district heating networks[J]. Energy, 2011, 36(7): 4278-4286. |
9 | KATULIĆ S, ČEHIL M, BOGDAN Ž. A novel method for finding the optimal heat storage tank capacity for a cogeneration power plant[J]. Applied Thermal Engineering, 2014, 65(1/2): 530-538. |
10 | RINNE S, SYRI S. The possibilities of combined heat and power production balancing large amounts of wind power in Finland[J]. Energy, 2015, 82: 1034-1046. |
11 | 罗海华, 张后雷, 刘文涛, 等. 基于熔盐蓄热的亚临界火电机组工业供热调峰技术[J]. 暖通空调, 2020, 50(10): 71-75.LUO H H,ZHANG H L,LIU W T,et al.Peak regulation technology for industrial heating of subcriticial thermal power units based on molten salt heat storage[J]. Heating Ventilating & Air Conditioning, 2020, 50(10): 71-75. |
12 | 闫百涛, 刘冠杰. 固体储热与燃煤发电系统耦合的数值模拟分析[J]. 工业加热, 2020,49(5): 29-33.YAN B T, LIU G J. Numerical simulation and analysis of coupling solid heat storage with coal-fired power generation system[J]. Industrial Heating, 2020, 49(5): 29-33. |
13 | 王惠杰, 董学会, 杨杰, 等. 基于Aspen Plus的配置储热装置供热机组调峰范围研究[J]. 汽轮机技术, 2019, 61(2): 131-135.WANG H J, DONG X H, YANG J, et al. Study on peak shaving rang of heat storage units based on aspen plus[J]. Turbine Technology, 2019, 61(2): 131-135. |
14 | TROJAN M, TALER D, DZIERWA P, et al. The use of pressure hot water storage tanks to improve the energy flexibility of the steam power unit[J]. Energy, 2019, 173: 926-936. |
15 | LI D C, WANG J H. Study of supercritical power plant integration with high temperature thermal energy storage for flexible operation[J]. Journal of Energy Storage, 2018, 20: 140-152. |
16 | GARBRECHT O, BIEBER M, KNEER R. Increasing fossil power plant flexibility by integrating molten-salt thermal storage[J]. Energy, 2017, 118: 876-883. |
17 | 庞力平, 张世刚, 段立强. 高温熔盐储能提高二次再热机组灵活性研究[J]. 中国电机工程学报, 2021, 41(8): 2682-2691. |
PANG L P, ZHANG S G, DUAN L Q. Flexibility improvement study on the double reheat power generation unit with a high temperature molten salt thermal energy storage[J]. Proceedings of the CSEE, 2021, 41(8): 2682-2691. | |
18 | 董学会. 配置蓄热装置的供热机组灵活性分析[D]. 北京: 华北电力大学, 2019.DONG X H. Analysis of the flexibility of the heating unit with the heat storage device[D]. Beijing: North China Electric Power University, 2019. |
19 | DONG Y L, JIANG X, LIANG Z H, et al. Coal power flexibility, energy efficiency and pollutant emissions implications in China: A plant-level analysis based on case units[J]. Resources, Conservation and Recycling, 2018, 134: 184-195. |
20 | WOJCIK J, WANG J H. Technical feasibility study of thermal energy storage integration into the conventional power plant cycle[J]. Energies, 2017, 10(2): 205. |
21 | 凌浩恕, 何京东, 徐玉杰, 等. 清洁供暖储热技术现状与趋势[J]. 储能科学与技术, 2020, 9(3): 861-868.LING H S, HE J D, XU Y J, et al. Status and prospect of thermal energy storage technology for clean heating[J]. Energy Storage Science and Technology, 2020, 9(3): 861-868. |
22 | 侯丹. 基于Aspen Plus的㶲分析在火电厂清洁生产实践中的应用[D]. 大连: 大连理工大学, 2011.HOU D. Exergy analysis applied in thermal power plant, cleaner product practice based on Aspen Plus[D]. Dalian: Dalian University of Technology, 2011. |
23 | 杨红霞. 背压式热电联产热力系统优化[D]. 上海: 上海交通大学, 2018.YANG H X. Thermodynamic system optimization of combinde heat and power plant with back-pressure steam turbine[D]. Shanghai: Shanghai Jiaotong University, 2018. |
[1] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[2] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[3] | Na YANG, Chengcheng WANG, Hui YANG, Zhihao HU, Lige TONG, Zhongbo LI, Li WANG, Yulong DING, Na LI. Non-isothermal kinetics calculation and heat storage performance analysis of silica gel based on thermochemical reaction [J]. Energy Storage Science and Technology, 2022, 11(5): 1331-1338. |
[4] | Yunqi GUO, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of Al2O3 fibers using a template method, and the investigation of the thermal properties of paraffin phase-change composite [J]. Energy Storage Science and Technology, 2022, 11(2): 511-520. |
[5] | Zhao DU, Kang YANG, Gao SHU, Pan WEI, Xiaohu YANG. Experimental Study on the Heat Storage and Release of the Solid-Liquid Phase Change in Metal-Foam-Filled Tube [J]. Energy Storage Science and Technology, 2022, 11(2): 531-537. |
[6] | Yongxue ZHANG, Zixi WANG, Bohui LU, Shengqi YANG, Hongyu ZHAO. Enhancement of charging and discharging performance of a latent-heat thermal-energy storage unit using snowflake-shaped fins [J]. Energy Storage Science and Technology, 2022, 11(2): 521-530. |
[7] | Shitan ZHANG, Shuai CHU, Weichun GE, Yinxuan LI, Chuang LIU. Evaluation method for the coordinated regulation of large-scale abandoned wind power and heat storage [J]. Energy Storage Science and Technology, 2022, 11(1): 283-290. |
[8] | Hui WANG, Jun LI, Peiwang ZHU, Jian WANG, Chunlin ZHANG. Hundred-megawatt molten salt heat storage system for deep peak shaving of thermal power plant [J]. Energy Storage Science and Technology, 2021, 10(5): 1760-1767. |
[9] | Youqiang LINGHU, Dehou XU, Xiuyan YUE, Xuezhi ZHOU, Yujie XU, Yong SHENG, Zhitao ZUO, Haisheng CHEN. Study on characteristics of the discharge process for zeolite-liquid water adsorption heat storage system [J]. Energy Storage Science and Technology, 2021, 10(3): 1103-1108. |
[10] | Haohui DONG, Liwei WANG. Investigating on the “reaction wave” phenomenon of zeolite 13X for open sorption heat storage [J]. Energy Storage Science and Technology, 2021, 10(2): 497-505. |
[11] | Junlei WANG, Xianggui XU, Tong SUN, Hua YAO, Minghang SONG, Yan WANG, Yun HUANG. Simulation of heat storage process in spiral fin phase change heat storage unit [J]. Energy Storage Science and Technology, 2021, 10(2): 514-522. |
[12] | Jianjun CAO, Jun WANG, Liyong ZHANG, Yaqi LIU, Haoshu LING, Liang WANG, Yujie XU, Xuezhi ZHOU, Haisheng CHEN. Benefit analysis of heat storage technology applied to distributed energy system with renewable energy [J]. Energy Storage Science and Technology, 2021, 10(1): 385-392. |
[13] | Haihua LUO, Qiang SHEN, Junguang LIN, Yanmei ZHANG, Yunke XU. Development of new low melting point mixed molten salt heat storage material [J]. Energy Storage Science and Technology, 2020, 9(6): 1755-1759. |
[14] | Jun WANG, Jianjun CAO, Liyong ZHANG, Yaqi LIU, Haoshu LING, Yujie XU, Liang WANG, Xuezhi ZHOU, Ningning XIE, Haisheng CHEN. Review on application of cold storage and heat storage technology based on distributed energy system [J]. Energy Storage Science and Technology, 2020, 9(6): 1847-1857. |
[15] | Likui WENG, Yelong ZHANG, Lin JIANG, Yixuan JIA, Linghua TAN, Yi JIN, Yulong DING. Research progress on thermochemical adsorption heat storage technology based on hydrate [J]. Energy Storage Science and Technology, 2020, 9(6): 1729-1736. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||