Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (6): 1729-1736.doi: 10.19799/j.cnki.2095-4239.2020.0168
• Energy Storage Materials and Devices • Previous Articles Next Articles
Likui WENG1(), Yelong ZHANG2,3, Lin JIANG1, Yixuan JIA1, Linghua TAN2,3, Yi JIN1(), Yulong DING2,4
Received:
2020-05-07
Revised:
2020-06-22
Online:
2020-11-05
Published:
2020-10-28
Contact:
Yi JIN
E-mail:likui.weng@jinhe-energy.com;yi.jin@jinhe-energy.com
CLC Number:
Likui WENG, Yelong ZHANG, Lin JIANG, Yixuan JIA, Linghua TAN, Yi JIN, Yulong DING. Research progress on thermochemical adsorption heat storage technology based on hydrate[J]. Energy Storage Science and Technology, 2020, 9(6): 1729-1736.
1 | BROCKWAY P E, OWEN A, BRAND-CORREA L I, et al. Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources[J]. Nature Energy, 2019, 4: 612-621. |
2 | KING L C, van den BERGH J C J M. Implications of net energy-return-on-investment for a low-carbon energy transition[J]. Nature Energy, 2018, 3: 334-340. |
3 | 冷光辉, 蓝志鹏, 葛志伟, 等. 储热材料研究进展[J]. 储能科学与技术, 2015, 4(2): 119-130. |
LENG Guanghui, LAN Zhipeng, GE Zhiwei, et al. Recent progress in thermal energy storage materials[J]. Energy Storage Science and Technology, 2015, 4(2): 119-130. | |
4 | BENITEZ-GUERRERO M, VALVERDE J M, PEREJON A, et al. Low-cost Ca-based composites synthesized by biotemplate method for thermochemical energy storage of concentrated solar power[J]. Applied Energy, 2018, 210: 108-116. |
5 | ELOUALI A, KOUSKSOU T, RHAFIKI T EL, et al. Physical models for packed bed: Sensible heat storage systems[J]. Journal of Energy Storage, 2019, 23: 69-78. |
6 | NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: A review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. |
7 | QIU L, OUYANG Y, FENG Y, et al. Review on micro/nano phase change materials for solar thermal applications[J]. Renewable Energy, 2019, 140: 513-538. |
8 | JARIMI H, AYDIN D, YANAN Z, et al. Review on the recent progress of thermochemical materials and processes for solar thermal energy storage and industrial waste heat recovery[J]. International Journal of Low-Carbon Technologies, 2018, 14: 44-69. |
9 | LIN Y, ALVA G, FANG G. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials[J]. Energy, 2018, 165: 685-708. |
10 | LI C, LI Q, DING Y L. Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials[J]. Applied Energy, 2019, 247: 37-388. |
11 | PENG H, ZHANG D, LING X, et al. n-Alkanes phase change materials and their microencapsulation for thermal energy storage: A critical review[J]. Energy & Fuels, 2018, 32: 7262-7293. |
12 | KRESE G, KOZEL J R, BUTAL A V, et al. Thermochemical seasonal solar energy storage for heating and cooling of buildings[J]. Energy Buildings, 2018, 164: 239-253. |
13 | 苗琪, 张叶龙, 谈玲华, 等. 矿物基化学吸附储热技术的研究进展[J]. 化工进展, 2020, 39(4): 1308-1320. |
MIAO Qi, ZHANG Yelong, TAN Linghua, et al. Research progress of mineral-based chemical adsorption heat storage technology[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1308-1320. | |
14 | ALVA G, LIN Y, FANG G. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-478. |
15 | SALUNKHE P B, JAYA K D. Investigations on latent heat storage materials for solar water and space heating applications[J]. J. Energy Storage, 2017, 12: 243-260. |
16 | MAHLIA T M I, SAKTISAHDAN T J, JANNIFAR A, et al. A review of available methods and development on energy storage technology update[J]. Renewable and Sustainable Energy Reviews, 2014, 33: 532-545. |
17 | IBRAHIM N I, AL-SULAIMAN F A, ANI F N. Solar absorption systems with integrated absorption energy storage-A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1602-1610. |
18 | YAN T S, LI T X, XU J X, et al. Understanding the transition process of phase change and dehydration reaction of salt hydrate for thermal energy storage[J]. Applied Thermal Engineering, 2020, 166: 114655. |
19 | GORDEEVA L G, ARISTOV Y I. Adsorptive heat storage and amplification: New cycles and adsorbents[J]. Energy, 2019, 167: 440-453. |
20 | DONKERS P A J, SÖGÜTOGLU L C, HUININK H P, et al. A review of salt hydrates for seasonal heat storage in domestic applications[J]. Applied Energy, 2017, 199: 45-68. |
21 | N'TSOUKPOE K E, SCHMIDT T, RAMMELBERG H U, et al. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage[J]. Applied Energy, 2014, 124: 1-16. |
22 | RICHTER M, HABERMANN E M, SIEBECKE L, et al. A systematic screening of salt hydrates as materials for a thermochemical heat transformer[J]. Thermochim Acta, 2018, 659: 136. |
23 | ZHANG Y N, WANG R Z. Sorption thermal energy storage: Concept, process, applications and perspectives[J]. Energy Storage Materials, 2020, 27: 352-369. |
24 | RISTI A, LOGAR N Z. New composite water sorbents CaCl2-PHTS for low-temperature sorption heat storage: Determination of structural properties[J]. Nanomaterials, 2019, 9: 27-33. |
25 | YU N, WANG R Z, LU Z, et al. Study on consolidated composite sorbents impregnated with LiCl for thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2015, 84: 660-670. |
26 | ZHANG Y N, WANG R Z, LI T X. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage[J]. Energy, 2018, 156: 240-249. |
27 | GAEINI M, ROUWS A L, SALARI J W O, et al. Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage[J]. Applied Energy, 2018, 212: 1165-1177. |
28 | CAMMARATA A, VERDA V, SCIACOVELLI A, et al. Hybrid strontium bromide-natural graphite composites for low to medium temperature thermochemical energy storage: Formulation, fabrication and performance investigation[J]. Energy Conversion and Management, 2018, 166: 233-240. |
29 | MAHON D, HENSHALL P, CLAUDIO G, et al. Feasibility study of MgSO4 + zeolite based composite thermochemical energy stores charged by vacuum flat plate solar thermal collectors for seasonal thermal energy storage[J]. Renewable Energy, 2020, 145: 1799-1807. |
30 | WANG Q, XIE Y, DING B, et al. Structure and hydration state characterizations of MgSO4-zeolite 13x composite materials for long-term thermochemical heat storage[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110047. |
31 | WHITING G T, GRONDIN D, STOSIC D, et al. Zeolite-MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption[J]. Solar Energy Materials and Solar Cells, 2014, 128: 289-295. |
32 | FUMEY B, WEBER R, BALDINI L. Sorption based long-term thermal energy storage-Process classification and analysis of performance limitations: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 57-74. |
33 | YU N, WANG R Z, WANG L W. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39: 489-514. |
34 | KERKES H, METTE B, BERTSCH F, et al. Development of a thermochemical energy storage for solar thermal applications[C]//ISES Solar World Congress 2011, Kassel, Germany. |
35 | ARMAND F L, FRÉDÉRIC K, OLIVER O, et al. Performance analysis of a thermochemical based heat storage as an addition to cogeneration systems[J]. Energy Conversion and Management, 2015, 106: 1327-1344. |
36 | ZHAO Y J, WANG R Z, LI T X, et al. Investigation of a 10 kW.h sorption heat storage device for effective utilization of low-grade thermal energy[J]. Energy, 2016, 113: 739-747. |
37 | SOLÉ A, MARTORELL I, CABEZA L F. State of the art on gas-solid thermochemical energy storage systems and reactors for building applications[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 386-398. |
38 | XU S Z, LEMINGTON, WANG R Z, et al. A zeolite 13X/magnesium sulfate-water sorption thermal energy storage device for domestic heating[J]. Energy Conversion and Management, 2018, 171: 98-109. |
39 | LAHMIDI H, MAURAN S, GOETZ V. Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems[J]. Solar Energy, 2006, 80(7): 883-893. |
40 | MICHEL B, MAZET N, MAURAN S, et al. Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high density reactive bed[J]. Energy, 2012, 47: 553-563. |
41 | VISSCHER K, VELDHUIS J B J. Comparison of candidate materials for seasonal storage of solar heat through dynamic simulation of building and renewable energy system[C]//Proceedings of the Ninth International Building Performance Simulation Association, 2005. |
42 | COT-GORES J, CASTELL A, CABEZA L F. Thermochemical energy storage and conversión: A-state-of-the-art review of the experimental research practical conditions[J]. Renewable and Sustainable Energy Reviews, 2012, 16: 5207-5224. |
43 | AYDIN D, CASEY S P, CHEN X J, et al. Novel "open-sorption pipe" reactor for solar thermal energy storage[J]. Energy Conversion and Management, 2016, 121: 321-334. |
44 | LIU H, NAGANO K, TOGAWA J. A composite material made of mesoporous siliceous shale impregnated with lithium chloride for an open sorption thermal energy storage system[J]. Solar Energy, 2015, 111: 186-200. |
45 | LASS-SEYOUM A, BLICKER M, BOROZDENKO D, et al. Transfer of laboratory results on closed sorption thermochemical energy storage to a large-scale technical system[J]. Energy Procedia, 2012, 30: 310-320. |
[1] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[2] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[3] | Na YANG, Chengcheng WANG, Hui YANG, Zhihao HU, Lige TONG, Zhongbo LI, Li WANG, Yulong DING, Na LI. Non-isothermal kinetics calculation and heat storage performance analysis of silica gel based on thermochemical reaction [J]. Energy Storage Science and Technology, 2022, 11(5): 1331-1338. |
[4] | Zhao DU, Kang YANG, Gao SHU, Pan WEI, Xiaohu YANG. Experimental Study on the Heat Storage and Release of the Solid-Liquid Phase Change in Metal-Foam-Filled Tube [J]. Energy Storage Science and Technology, 2022, 11(2): 531-537. |
[5] | Yongxue ZHANG, Zixi WANG, Bohui LU, Shengqi YANG, Hongyu ZHAO. Enhancement of charging and discharging performance of a latent-heat thermal-energy storage unit using snowflake-shaped fins [J]. Energy Storage Science and Technology, 2022, 11(2): 521-530. |
[6] | Yunqi GUO, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of Al2O3 fibers using a template method, and the investigation of the thermal properties of paraffin phase-change composite [J]. Energy Storage Science and Technology, 2022, 11(2): 511-520. |
[7] | Shitan ZHANG, Shuai CHU, Weichun GE, Yinxuan LI, Chuang LIU. Evaluation method for the coordinated regulation of large-scale abandoned wind power and heat storage [J]. Energy Storage Science and Technology, 2022, 11(1): 283-290. |
[8] | Tianxin XU, Xikun TIAN, Jun YAN, Qiang YE, Changying ZHAO. Thermochemical energy storage reaction performance of CaCO3 with TiO2 doping [J]. Energy Storage Science and Technology, 2022, 11(1): 1-8. |
[9] | Xianrong ZHANG, Yujie XU, Lijun YANG, Lexuan LI, Haisheng CHEN, Xuezhi ZHOU. Performance analysis and comparison of multi-type thermal power-heat storage coupling systems [J]. Energy Storage Science and Technology, 2021, 10(5): 1565-1578. |
[10] | Xiangyu HAN, Liang WANG, Zhiwei GE, Haoshu LING, Xipeng LIN, Haisheng CHEN, Long PENG. The thermal storage and release kinetics of Co3O4/CoO redox reaction [J]. Energy Storage Science and Technology, 2021, 10(5): 1701-1708. |
[11] | Bowen YANG, Jun YAN, Changying ZHAO. Investigating the performance of a fluidized bed reactor for a magnesium hydroxide thermochemical energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1735-1744. |
[12] | Hui WANG, Jun LI, Peiwang ZHU, Jian WANG, Chunlin ZHANG. Hundred-megawatt molten salt heat storage system for deep peak shaving of thermal power plant [J]. Energy Storage Science and Technology, 2021, 10(5): 1760-1767. |
[13] | Yimo LUO, Jinjin RUI, Wei XU, Jinqing PENG, Xiaohui SHE, Nianping LI, Yulong DING. Research progress on physical property control and heat and mass transfer optimization of hydrated salt in thermochemical heat storage reactor [J]. Energy Storage Science and Technology, 2021, 10(4): 1273-1284. |
[14] | Youqiang LINGHU, Dehou XU, Xiuyan YUE, Xuezhi ZHOU, Yujie XU, Yong SHENG, Zhitao ZUO, Haisheng CHEN. Study on characteristics of the discharge process for zeolite-liquid water adsorption heat storage system [J]. Energy Storage Science and Technology, 2021, 10(3): 1103-1108. |
[15] | Haohui DONG, Liwei WANG. Investigating on the “reaction wave” phenomenon of zeolite 13X for open sorption heat storage [J]. Energy Storage Science and Technology, 2021, 10(2): 497-505. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||