Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (1): 177-189.doi: 10.19799/j.cnki.2095-4239.2020.0232
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zhong XU1,2,3(), Jing HOU1, Jun LI2,3, Enhui WU2,3, Ping HUANG2,3, Yalan TANG1
Received:
2020-07-02
Revised:
2020-09-09
Online:
2021-01-05
Published:
2021-01-08
Contact:
Zhong XU
E-mail:418968604@qq.com
CLC Number:
Zhong XU, Jing HOU, Jun LI, Enhui WU, Ping HUANG, Yalan TANG. Properties of different particle-sized activated carbon/myristic acid composite phase change material[J]. Energy Storage Science and Technology, 2021, 10(1): 177-189.
Table 2
Temperature difference of composite materials under the same temperature and different pressure"
压力/MPa | 纯MA | AC1/MA | AC2/MA | AC3/MA | AC4/MA | |||||
---|---|---|---|---|---|---|---|---|---|---|
T1/℃ | T2/℃ | T1/℃ | T2/℃ | T1/℃ | T2/℃ | T1/℃ | T2/℃ | T1/℃ | T2/℃ | |
0 | 3.1 | 2.7 | 1.6 | 0.6 | 0.6 | 0.6 | 1.1 | 3.6 | ||
2 | 8.4 | 3.1 | 6.3 | 2.9 | 3.3 | 0.6 | 1.8 | 0.6 | 0.6 | 0.5 |
4 | 4.1 | 2.5 | 4.0 | 2.4 | 0.9 | 0.5 | 0.6 | 0.5 | 2.5 | 0.7 |
6 | 4.6 | 1.9 | 0.6 | 0.6 | 5.6 | 2.6 | 3.1 | 0.6 | 8.7 | 5.7 |
8 | 4.9 | 3.2 | 0.8 | 1.3 | 5.1 | 2.4 | 3.9 | 1.8 | 5.1 | 5.1 |
10 | 3.5 | 3.0 | 0.8 | 0.6 | 5.3 | 1.7 | 5.6 | 2.3 | 3.4 | 2.3 |
Table 3
Exponential fitting results of resistivity curve"
材料 | 拟合方程 | 决定系数R2 |
---|---|---|
AC4 | y=2179.7+19534.6×exp(-x/2.0563) | 0.98378 |
AC4+8% graphite | y=396.65+9130.98×exp(-x/1.3769) | 0.98929 |
AC4+10% graphite | y=89.091+6212.06×exp(-x/1.10557) | 0.99657 |
AC1/MA+8% graphite | y=53.7174+3435.53×exp(-x/1.43462) | 0.96591 |
AC2/MA+8% graphite | y=9.18046+2017.35×exp(-x/1.4661) | 0.99234 |
AC3/MA+8% graphite | y=16.3976+7789.82×exp(-x/1.3499) | 0.99956 |
AC4/MA+8% graphite | y=6.58653+320.273×exp(-x/1.8332) | 0.99231 |
AC1/MA+10% graphite | y=12.2668+1867.63×exp(-x/1.1826) | 0.97837 |
AC2/MA+10% graphite | y=4.12206+344.133×exp(-x/1.3839) | 0.98201 |
AC3/MA+10% graphite | y=7.75698+1922.48×exp(-x/1.0871) | 0.98899 |
AC4/MA+10% graphite | y=4.11500+290.631×exp(-x/1.6605) | 0.98819 |
AC4+10% graphite +MA | y=19.8737+2902.24×exp(-x/0.8959) | 0.99927 |
1 | 王静静, 徐小亮, 梁凯彦, 等. 多孔基定形复合相变材料传热性能提升研究进展[J]. 工程科学学报, 2020 , 42(1): 26-38 |
WANG Jingjing, XU Xiaoliang, LIANG Kaiyan, et al. Thermal conductivity enhancement of porous shape-stabilized composite phase change materials for thermal energy storage applications: A review[J]. Chinese Journal of Engineering, 2020, 42(1): 26-38. | |
2 | HU Zhanjiang, WANG Chaoming, JIA Wenbing, et al. Preparation and thermal properties of 1-hexadeacnol-palmitic acid eutectic mixture/activated carbon composite phase change material for thermal energy[J]. Storage Energy Technology & Environmental Science, 2019, 4(1): 222-227. |
3 | ZHANG Xialan, LIN Qilang, LUO Huijun, et al. Three-dimensional graphitic hierarchical porous carbon/stearic acid composite as shape-stabilized phase change material for thermal energy storage[J]. Applied Energy, 2020, 260(1): doi: 10.1016/j.apenergy.2019.114278. |
4 | ZHU Xiao, HAN Liang, YANG Fei, et al. Lightweight mesoporous carbon fibers with interconnected graphitic walls for supports of form-stable phase change materials with enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2020, 208(5): doi: 10.1016/j.solmat.2019.110361. |
5 | ZHU Xiao, HAN Liang, LU Yunfeng, et al. Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes[J]. Applied Energy, 2019, 254(21): doi: 10.1016/j.apenergy.2019.113688. |
6 | MISHRA A K, LAHIRI B. B, PHILIP J. Carbon black nano particle loaded lauric acid-based form-stable phase change material with enhanced thermal conductivity and photo-thermal conversion for thermal energy storage[J]. Energy, 2020, 191(2): doi: 10.1016/j.energy.2019.16572. |
7 | XIE Baoshan, LI Chuanchang, ZHANG Bo, et al. Evaluation of stearic acid/coconut shell charcoal composite phase change thermal energy storage materials for tankless solar water heater[J]. Energy and Built Environment, 2020, 1(2): 187-198. |
8 | 李亚琼, 李洋, 席作帅, 等 茄子衍生多孔碳负载聚乙二醇相变复合材料[J]. 工程科学学报, 2020 , 42(1): 106-112 |
LI Yaqiong, LI Yang, XI Zuoshuai, et al. Eggplant-derived porous carbon encapsulating polyethylene glycol as phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 106-112. | |
9 | ZHANG Haichen, KANG Benhao, SHENG Xinxin, et al. Novel bio-based pomelo peel flour/polyethylene glycol composite phase change material for thermal energy storage[J]. Polymers, 2019, 11(12): doi: 10.3390/polym11122043. |
10 | 陶璋, 伍玲梅, 张亚飞, 等 . 生物质多孔碳基复合相变材料制备及性能[J]. 工程科学学报, 2020 , 42(1): 113-119 |
TAO Zhang, WU Lingmei, ZHANG Yafei, et al. Preparation and properties of biomass porous carbon composite phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 113-119. | |
11 | TANG Lisheng, ZHAO Xing, FENG Changping, et al. Bacterial cellulose/MXene hybrid aerogels for photo driven shape-stabilized composite phase change materials[J]. Solar Energy Materials and Solar Cells, 2019, 203(15): doi: 10.1016/j.solmat.2019.110174. |
12 | ZHOU Dongyi, ZHOU Yuhong, YUAN Jiawei, et al. Palmitic acid-stearic acid/expanded graphite as form-stable composite phase-change material for latent heat thermal energy storage[J]. Journal of Nanomaterials, 2020, doi: https://doi. org/10. 1155/2020/1648080. |
13 | GARIBALDI E, COLOMBO L, FAGIANI D, et al. Methods to characterize effective thermal conductivity, diffusivity and thermal response in different classes of composite phase change materials[J]. Materials, 2019, 12(16): doi: http://doi.org/3390/mal12162552. |
14 | ZHANG Jiangyun, LI Xinxi, ZHANG Guoqing, et al. Characterization and experimental investigation of aluminum nitride-based composite phase change materials for battery thermal management[J]. Energy Conversion and Management, 2020, 204(15): doi: 10.1016/j.enconman.2019.112319. |
15 | LI Chuanchang, ZHANG Bo, LIU Qingxia. N-eicosane/expanded graphite as composite phase change materials for electro-driven thermal energy storage[J]. Journal of Energy Storage, 2020, 29(3): doi: 10.1016/j.est.2020.101339. |
16 | YU Chengbin, YOUN J R, SONG Y S. Encapsulated phase change material embedded by graphene powders for smart and flexible thermal response[J]. Fibers and Polymers, 2019, 20(3): 545-554. |
17 | 董光能, 谢友柏, 虞烈, 等. 相变可控的复合导电自润滑材料的加热特性[J]. 高分子材料科学与工程, 2002(3): 125-128. |
DONG Guangneng, XIE Youbai, YU Lie, et al. Heating characteristics of self-lubricating conducting composites materials with controllable phase transformation[J]. Polymer Materials Science & Engineering, 2002(3): 125-128. | |
18 | 张璐一. 掺加相变材料和碳纤维材料的沥青混凝土路面融雪去冰效果研究[D]. 天津: 河北工业大学, 2015. |
ZHANG Luyi. The study on the effect of melting snow and ice by asphalt concrete pavement filled with phase-change material and carbon fiber material[D]. Tianjin: Hebei University of Technology, 2015. | |
19 | 任苗. 导电相变储热混凝土的制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. |
REN Miao. Preparation and performance research of electrical conductive concrete incorporating phase change thermal storage aggregate[D]. Harbin: Harbin Institute of Technology, 2018. | |
20 | 赵宇轩. 静电纺丝法制备光电调温储能复合纤维与性能研究[D]. 北京: 北京石油化工学院, 2019. |
ZHAO Yuxuan. Performance and properties of photoelectric temperature-regulating energy-storage composite fiber prepared by electrospinning[D]. Beijing: Beijing Institute of Petrochemical Technology, 2019. | |
21 | LIU Peng, GU Xiaobin, BIAN Liang, et al. Caprice acid/intercalated diatomite as form-stable composite phase change material for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(1): 359-368. |
22 | 徐众, 黄平, 吴恩辉, 等. 膨胀石墨/石蜡复合相变材料的电阻率分析[J]. 储能科学与技术, 2019, 8(2): 371-378. |
XU Zhong, HUANG Ping, WU Enhui, et al. Analysis of resistivity of expanded graphite/paraffin phase change material[J]. Energy Storage Science and Technology, 2019, 8(2): 371-378. | |
23 | LU Xiang, LIANG Bing, SHENG Xinxin, et al. Enhanced thermal conductivity of polyurethane/wood powder composite phase change materials via incorporating low loading of graphene oxide nanosheets for solar thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 208(5): doi: 10.1016/j.solmat.2019.110391. |
24 | 王博, 朱孝钦, 胡劲, 等. 利用纳米石墨强化正癸酸-十四醇复合相变材料的导热性能[J]. 材料导报, 2019, 33(22): 3815-3819. |
WANG Bo, ZHU Xiaoqin, HU Jin, et al. Nano-graphite enhanced thermal conductivity of decanoic caid-tetradecyl alcohol composite phase change material[J]. Materials Reports, 2019, 33(22): 3815-3819. | |
25 | SAEED R, HAMID M, RAMIN H K, et al. Experimental investigation of stability and thermal conductivity of phase change materials containing pristine and functionalized multi-walled carbon nanotubes[J]. Journal of Thermal Analysis and Calorimetry, 2019, 140: 2505-2518. |
26 | YANG Li, CAO Xiaoling, ZHANG Nan, et al. Thermal reliability of typical fatty acids as phase change materials based on 10, 000 accelerated thermal cycles[J]. Sustainable Cities and Society, 2019, 46(3): doi: 10.1016/j.scs.2018.12.008. |
27 | SARI A, AL-AHMED A, BICER A, et al. Investigation of thermal properties and enhanced energy storage/release performance of silica fume/myristic acid composite doped with carbon nanotubes[J]. Renewable Energy, 2019, 140(11): 779-788. |
28 | XUE Fei, LU Yu, QI Xiaodong, et al. Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities[J]. Chemical Engineering Journal, 2019, 365(11): 20-29. |
29 | WEI Xiao, XUE Fei, QI Xiaodong, et al. Photo- and electro-responsive phase change materials based on highly anisotropic microcrystalline cellulose/graphene nanoplatelet structure[J]. Applied Energy, 2019, 236(1): 70-80. |
30 | 王青青, 范鹏远, 陈玉明, 等. 膨胀石墨/石蜡复合相变材料热-电特性实验研究[J]. 塑料工业, 2018, 46(9): 129-133+137. |
WANG Qingqing, FAN Pengyuan, CHEN Yuming, et al. Experimental study on the thermo-physical and electrical properties of paraffin/expanded graphite composite phase change materials[J]. China Plastics Industry, 2018, 46(9): 129-133+137. |
[1] | Jin WANG, Jianquan WANG, Dianbo RUAN, Jiao XIE, Bin YANG. Preparation and electrochemical performances of Si/activated carbon composites [J]. Energy Storage Science and Technology, 2021, 10(1): 104-110. |
[2] | GUAN Yibiao, SHEN Jinran, LI Kangle, XU Bin. Research progress on capacitive lithium-ion battery [J]. Energy Storage Science and Technology, 2019, 8(5): 799-806. |
[3] | YANG Bin1,2, FU Guansheng2, DING Sheng2, WANG Chengyang1, RUAN Dianbo2, LIU Qiuxiang2. Electrochemical performance of lithium ion capacitors using high-capacitance Li2NiO2/AC as the negative electrode [J]. Energy Storage Science and Technology, 2018, 7(2): 270-275. |
[4] | ZHANG Shijia, ZHANG Xiong, SUN Xianzhong, ZHAO Feifei, JIA Junxiang, MA Yanwei. Effect of the pre-lithiation capacity of mesocarbon microbeads anode on the performances of a flexible packaging lithium ion capacitors#br# [J]. Energy Storage Science and Technology, 2016, 5(6): 834-840. |
[5] | MA Yuzhu1,2, ZHOU Cong3, YU Baojun1,2, CHEN Mingming1,2, WANG Chengyang1, 2. Study on preparation and electrochemical properties of biomass-derived spherical activated carbon [J]. Energy Storage Science and Technology, 2016, 5(6): 855-860. |
[6] | ZHENG Chao1, ZHOU Xufeng2, LIU Zhaoping2, YANG Bin1, JIAO Wangchun1, Fu Guansheng1, RUAN Dianbo1. Preparation of activated graphene/activated carbon dry composite electrode and its application in supercapacitors [J]. Energy Storage Science and Technology, 2016, 5(4): 486-491. |
[7] | ZHANG Yafei, ZHANG Chuanxiang, WANG Li, XING Baolin, HUANG Guangxu, DUAN Yuling. Activated carbons derived from fly ash and their electorchemical performances in supercapacitors [J]. Energy Storage Science and Technology, 2014, 3(4): 353-359. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||