Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (3): 1109-1116.doi: 10.19799/j.cnki.2095-4239.2021.0010
• Energy Storage System and Engineering • Previous Articles Next Articles
Jianjiang XIE(), Xiang GAO(), Chengqiang XIA, Yi ZHENG, Hao WANG
Received:
2021-01-09
Revised:
2021-01-24
Online:
2021-05-05
Published:
2021-04-30
Contact:
Xiang GAO
E-mail:xjj@china-gold.com;gaoxiang@china-gold.com
CLC Number:
Jianjiang XIE, Xiang GAO, Chengqiang XIA, Yi ZHENG, Hao WANG. Research on information acquisition system of lithium battery energy storage cabin[J]. Energy Storage Science and Technology, 2021, 10(3): 1109-1116.
1 | 国家电网公司"电网新技术前景研究"项目咨询组, 王松岑, 来小康, 等. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化, 2013, 37(1): 3-8, 30. |
Consulting Group of State Grid Corporation of China to Prospects of New Technologies in Power Systems, Wang Songcen, LAI Xiaokang, et al. An analysis of prospects for application of large-scale energy storage technology in power systems[J]. Automation of Electric Power Systems, 2013, 37(1): 3-8, 30. | |
2 | ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries: A review[J]. Journal of Power Sources, 2016, 306: 178-192. |
3 | LIAO Z H, ZHANG S, LI K, et al. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries[J]. Journal of Power Sources, 2019, 436: 226879. |
4 | LIU X, REN D S, HSU H, et al. Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2(10): 2047-2064. |
5 | 张华东, 张宏亮. 一起火电厂储能系统火灾事故的调查与认定[J]. 消防科学与技术, 2017, 36(10): 1473-1476. |
ZHANG H D, ZHANG H L. Investigation and determination of an energy storage system fire of a thermal power plant[J]. Fire Science and Technology, 2017, 36(10): 1473-1476. | |
6 | 张青松, 姜乃文, 罗星娜, 等. 锂离子电池热失控多米诺效应实证研究[J]. 科学技术与工程, 2016, 16(10): 252-256. |
ZHANG Q S, JIANG N W, LUO X N, et al. Lithium-ion battery thermal runaway domino effect experimental verification research[J]. Science Technology and Engineering, 2016, 16(10): 252-256. | |
7 | 侯学勇, 陈军, 陈玉林, 等. 智能变电站故障录波与PMU一体化设计与实现[C]//第十五届保护与控制学术研究讨论文集, 北京: 中国水利水电出版社, 2015: 208-284. |
HOU X Y, CHEN J, CHEN Y L, et al. Design and Implementation for Integrative Equipment of Fault Recorder and PMU in Smart Substation[C]//The 15th Symposium on relay protection and control. Beijing: China Water Power Press, 2015: 208-284. | |
8 | 罗毅. 分布式故障录波系统[J]. 电力系统自动化, 2001, 25(20): 59-62. |
LUO Y. Distributed fault recording system[J]. Automation of Electric Power Systems, 2001, 25(20): 59-62. | |
9 | 邢浩江, 张东来. 一种实时高精度故障录波系统同步控制方法[J]. 电力系统自动化, 2009, 33(6): 63-66. |
XING H J, ZHANG D L. A high accuracy and real-time synchronous control method for fault recording system[J]. Automation of Electric Power Systems, 2009, 33(6): 63-66. | |
10 | 李俊刚, 王皖豫, 崔岱, 等. 故障录波装置中IEC61850标准的研究与应用[J]. 电力系统保护与控制, 2010, 38(8): 97-99,114. |
LI J G, WANG W Y, CUI D, et al. Research and application on IEC61850 in fault recording device[J]. Power System Protection and Control, 2010, 38(8): 97-99,114. | |
11 | BARKHOLTZ H M, PREGER Y, IVANOV S, et al. Multi-scale thermal stability study of commercial lithium-ion batteries as a function of cathode chemistry and state-of-charge[J]. Journal of Power Sources, 2019, 435: doi: 10.1016/j.jpowsour.2019.226777. |
12 | INOUE T, MUKAI K. Roles of positive or negative electrodes in the thermal runaway of lithium-ion batteries: Accelerating rate calorimetry analyses with an all-inclusive microcell[J]. Electrochemistry Communications, 2017, 77: 28-31. |
13 | HILDEBRAND S, FRIESEN A, HAETGE J, et al. Delayed thermal runaway investigation on commercial 2.6 A·h NCM-LCO based 18650 lithium ion cells with accelerating rate calorimetry[J]. ECS Transactions, 2016, 74(1): 85-94. |
14 | JIANG F M, PENG P, SUN Y Q. Thermal analyses of LiFePO4/graphite battery discharge processes[J]. Journal of Power Sources, 2013, 243: 181-194. |
15 | 苏伟, 钟国彬, 沈佳妮, 等. 锂离子电池故障诊断技术进展[J]. 储能科学与技术, 2019, 8(2): 225-236. |
SU W, ZHONG G B, SHEN J N, et al. The progress in fault diagnosis techniques for lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(2): 225-236. | |
16 | 崔涛, 刘孝刚, 姜珊珊, 等. 变电站直流电源系统故障监测装置的研制与应用[J]. 江苏电机工程, 2016, 35(2): 26-30, 38. |
CUI T, LIU X G, JIANG S S, et al. The development and application of fault detection for DC power system[J]. Jiangsu Electrical Engineering, 2016, 35(2): 26-30, 38. | |
17 | 王春力, 贡丽妙, 亢平, 等. 锂离子电池储能电站早期预警系统研究[J]. 储能科学与技术, 2018, 7(6): 1152-1158. |
WANG C L, GONG L M, KANG P, et al. Research on early warning system of lithium ion battery energy storage power station[J]. Energy Storage Science and Technology, 2018, 7(6): 1152-1158. | |
18 | FENG X N, PAN Y, HE X M, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage, 2018, 18: 26-39. |
19 | OUYANG M G, ZHANG M X, FENG X N, et al. Internal short circuit detection for battery pack using equivalent parameter and consistency method[J]. Journal of Power Sources, 2015, 294: 272-283. |
20 | 罗伟林, 张立强, 吕超, 等. 锂离子电池寿命预测国外研究现状综述[J]. 电源学报, 2013, 11(1): 140-144. |
LUO W L, ZHANG L Q, LYU C, et al. Review on foreign status of life prediction of lithium-ion batteries[J]. Journal of Power Supply, 2013, 11(1): 140-144. | |
21 | 徐晶. 梯次利用锂离子电池容量和内阻变化特性研究[D]. 北京: 北京交通大学, 2014. |
XU J. Research on the variation characteristics of capacity and internal resistance of lithium-ion batteries echelon use[D]. Beijing: Beijing Jiaotong University, 2014. | |
22 | 赵钢, 孙豪赛, 罗淑贞. 基于BP神经网络的动力电池SOC估算[J]. 电源技术, 2016, 40(4): 818-819. |
ZHAO G, SUN H S, LUO S Z. Estimation of power battery SOC based on BP neural network[J]. Chinese Journal of Power Sources, 2016, 40(4): 818-819. | |
23 | 蔡信, 李波, 汪宏华, 等. 基于神经网络模型的动力电池SOC估计研究[J]. 机电工程, 2015, 32(1): 128-132. |
CAI X, LI B, WANG H H, et al. Estimation of state-of-charge for electric vehicle power battery with neural network method[J]. Journal of Mechanical & Electrical Engineering, 2015, 32(1): 128-132. |
[1] | Qunbin ZHANG, Tao DONG, Jingjing LI, Yanxia LIU, Haitao ZHANG. Research progress on the recovery and high-value utilization of spent electrolyte from lithium ion batteries [J]. Energy Storage Science and Technology, 2022, (): 1-14. |
[2] | Lu WANG, Feng WANG, Jing XU, Yanpeng ZHAO, Wei LI, Yanyan WANG, Yingbiao WANG. Sorting of retired lithium-ion batteries based on SOM+SVM [J]. Energy Storage Science and Technology, 2022, (): 1-9. |
[3] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[4] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[5] | Fengrong HE, Qiwen ZHANG, Dechao GUO, Yimin GUO, Xiaodong GUO. Influences of electrode structure on the electrical properties of (NMC+AC)/HC hybrid capacitor [J]. Energy Storage Science and Technology, 2022, 11(7): 2051-2058. |
[6] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[7] | Yuzuo WANG, Yinli LU, Miao DENG, Bin YANG, Xuewen YU, Ge JIN, Dianbo RUAN. Research progress of self-discharge in supercapacitors [J]. Energy Storage Science and Technology, 2022, 11(7): 2114-2125. |
[8] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[9] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[10] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[11] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[12] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[13] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[14] | Xiaosa ZHANG, Hongyuan WANG, Zhenbiao LI, Zhimei XIA. New process of sulfated roasting-water leaching for treating electrode material of spent lithium iron phosphate batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2066-2074. |
[15] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||