1 |
清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告2015[M]. 北京: 中国建筑工业出版社, 2015.
|
|
Building Energy Conservation Research Center, Tsinghua University. 2015 annual report on China building energy efficiency[M]. Beijing: China Building Industry Press, 2015.
|
2 |
国家发展改革委,国家能源局. 北方地区冬季清洁供暖规划(2017-2021年)[R]. 北京: 2017.
|
|
National Development and Reform Commission, National Energy Administration. Plan for cleaning heating in winter in North area (2017-2021)[R]. Beijing: 2017.
|
3 |
凌浩恕, 何京东, 徐玉杰, 等. 清洁供暖储热技术现状与趋势[J]. 储能科学与技术, 2020, 9(3): 861-868.
|
|
LING Haoshu, HE Jingdong, XU Yujie, et al. Status and prospect of thermal energy storage technology for clean heating[J]. Energy Storage Science and Technology, 2020, 9(3): 861-868.
|
4 |
YU Nan, WANG Ruzhu, WANG Liwei. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39(5): 489-514.
|
5 |
DAS C K, BASS O, KOTHAPALLI G, et al. Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 1205-1230.
|
6 |
VASTA S, BRANCATO V, LA ROSA D, et al. Adsorption heat storage: State-of-the-art and future perspectives[J]. Nanomaterials, 2018, 8(7): doi: 10.3390/nano8070522.
|
7 |
MICHEL B, NEVEU P, MAZET N. Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications[J]. Energy, 2014, 72: 702-716.
|
8 |
ABEDIN A H, ROSEN M A. Closed and open thermochemical energy storage: Energy- and exergy-based comparisons[J]. Energy, 2012, 41(1): 83-92.
|
9 |
ZHANG Yannan, WANG Ruzhu. Sorption thermal energy storage: Concept, process, applications and perspectives[J]. Energy Storage Materials, 2020, 27: 352-369.
|
10 |
ZHANG Yannan, DONG Haohui, WANG Ruzhu, et al. Air humidity assisted sorption thermal battery governed by reaction wave model[J]. Energy Storage Materials, 2020, 27: 9-16.
|
11 |
GAEINI M, VAN ALEBEEK R, SCAPINO L, et al. Hot tap water production by a 4 kW sorption segmented reactor in household scale for seasonal heat storage[J]. Journal of Energy Storage, 2018, 17: 118-128.
|
12 |
KUZNIK F, GONDRE D, JOHANNES K, et al. Numerical modelling and investigations on a full-scale zeolite 13X open heat storage for buildings[J]. Renewable Energy, 2019, 132: 761-772.
|
13 |
TATSIDJODOUNG P, LE PIERRÈS N, HEINTZ J, et al. Experimental and numerical investigations of a zeolite 13X/water reactor for solar heat storage in buildings[J]. Energy Conversion and Management, 2016, 108: 488-500.
|
14 |
ALEBEEK R V, SCAPINO L, BEVING M J M, et al. Investigation of a household-scale open sorption energy storage system based on the Zeolite 13X/water reacting pair[J]. Applied Thermal Engineering, 2018, 139: 325-333.
|
15 |
ZHANG Yannan, WANG Ruzhu, LI Tingxian. Experimental investigation on an open sorption thermal storage system for space heating[J]. Energy, 2017, 141: 2421-2433.
|