Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (5): 1735-1744.doi: 10.19799/j.cnki.2095-4239.2021.0141
Previous Articles Next Articles
Bowen YANG(), Jun YAN, Changying ZHAO()
Received:
2021-04-03
Revised:
2021-05-19
Online:
2021-09-05
Published:
2021-09-08
CLC Number:
Bowen YANG, Jun YAN, Changying ZHAO. Investigating the performance of a fluidized bed reactor for a magnesium hydroxide thermochemical energy storage system[J]. Energy Storage Science and Technology, 2021, 10(5): 1735-1744.
1 | ANDRÉ L, ABANADES S, FLAMANT G. Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2016, 64: 703-715. |
2 | PAN Z H, ZHAO C Y. Gas-solid thermochemical heat storage reactors for high-temperature applications[J]. Energy, 2017, 130: 155-173. |
3 | ERVIN G. Solar heat storage using chemical reactions[J]. Journal of Solid State Chemistry, 1977, 22(1): 51-61. |
4 | PARDO P, DEYDIER A, ANXIONNAZ-MINVIELLE Z, et al. A review on high temperature thermochemical heat energy storage[J]. Renewable and Sustainable Energy Reviews, 2014, 32: 591-610. |
5 | PAN Z H, ZHAO C Y. Dehydration/hydration of MgO/H2O chemical thermal storage system[J]. Energy, 2015, 82: 611-618. |
6 | WANG T, ZHAO C Y, YAN J. Investigation on the Ca(OH)2/CaO thermochemical energy storage system with potassium nitrate addition[J]. Solar Energy Materials and Solar Cells, 2020, 215: doi: 10.1016/j.solmat.2020.110646. |
7 | ORTIZ C, VALVERDE J M, CHACARTEGUI R, et al. The calcium-looping (CaCO3/CaO) process for thermochemical energy storage in concentrating solar power plants[J]. Renewable and Sustainable Energy Reviews, 2019, 113: doi: 10.1016/j.rser.2019.109252. |
8 | YAN Y L, WANG K, CLOUGH P T, et al. Developments in calcium/chemical looping and metal oxide redox cycles for high-temperature thermochemical energy storage: A review[J]. Fuel Processing Technology, 2020, 199: doi: 10.1016/j.fuproc.2019.106280. |
9 | KATO Y, YAMASHITA N, KOBAYASHI K, et al. Kinetic study of the hydration of magnesium oxide for a chemical heat pump[J]. Applied Thermal Engineering, 1996, 16(11): 853-862. |
10 | KATO Y, KOBAYASHI K, YOSHIZAWA Y. Durability to repetitive reaction of magnesium oxide/water reaction system for a heat pump[J]. Applied Thermal Engineering, 1998, 18(3/4): 85-92. |
11 | KATO Y, NAKAHATA J, YOSHIZAWA Y. Durability characteristics of the hydration of magnesium oxide under repetitive reaction[J]. Journal of Materials Science, 1999, 34(3): 475-480. |
12 | NAHDI K, ROUQUEROL F, TRABELSI AYADI M. Mg(OH)2 dehydroxylation: A kinetic study by controlled rate thermal analysis (CRTA)[J]. Solid State Sciences, 2009, 11(5): 1028-1034. |
13 | CHAISE A, MARTY P, DE RANGO P, et al. A simple criterion for estimating the effect of pressure gradients during hydrogen absorption in a hydride reactor[J]. International Journal of Heat and Mass Transfer, 2009, 52(19/20): 4564-4572. |
14 | SCHAUBE F, WÖRNER A, TAMME R. High temperature thermochemical heat storage for concentrated solar power using gas-solid reactions[J]. Journal of Solar Energy Engineering, 2011, 133(3): doi:10.1115/1.4004245. |
15 | SCHMIDT M, SZCZUKOWSKI C, ROßKOPF C, et al. Experimental results of a 10 kW high temperature thermochemical storage reactor based on calcium hydroxide[J]. Applied Thermal Engineering, 2014, 62(2): 553-559. |
16 | ROßKOPF C, HAAS M, FAIK A, et al. Improving powder bed properties for thermochemical storage by adding nanoparticles[J]. Energy Conversion and Management, 2014, 86: 93-98. |
17 | FARCOT L, LE PIERRÈS N, MICHEL B, et al. Numerical investigations of a continuous thermochemical heat storage reactor[J]. Journal of Energy Storage, 2018, 20: 109-119. |
18 | SCHAUBE F, UTZ I, WÖRNER A, et al. De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part B: Validation of model[J]. Chemical Engineering Research and Design, 2013, 91(5): 865-873. |
19 | SCHAUBE F, UTZ I, WÖRNER A, et al. De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part B: Validation of model[J]. Chemical Engineering Research and Design, 2013, 91(5): 865-873. |
20 | YAN J, PAN Z H, ZHAO C Y. Experimental study of MgO/Mg(OH)2 thermochemical heat storage with direct heat transfer mode[J]. Applied Energy, 2020, 275: doi: 10.1016/j.apenergy.2020.115356. |
21 | CRIADO Y A, ALONSO M, ABANADES J C. Kinetics of the CaO/Ca(OH)2 hydration/dehydration reaction for thermochemical energy storage applications[J]. Industrial & Engineering Chemistry Research, 2014, 53(32): 12594-12601. |
22 | ANGERER M, BECKER M, HÄRZSCHEL S, et al. Design of a MW-scale thermo-chemical energy storage reactor[J]. Energy Reports, 2018, 4: 507-519. |
23 | FLEGKAS S, BIRKELBACH F, WINTER F, et al. Fluidized bed reactors for solid-gas thermochemical energy storage concepts-Modelling and process limitations[J]. Energy, 2018, 143: 615-623. |
24 | BELLAN S, KODAMA T, MATSUBARA K, et al. Heat transfer and particulate flow analysis of a 30 kW directly irradiated solar fluidized bed reactor for thermochemical cycling[J]. Chemical Engineering Science, 2019, 203: 511-525. |
25 | CRIADO Y A, HUILLE A, ROUGÉ S, et al. Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications[J]. Chemical Engineering Journal, 2017, 313: 1194-1205. |
26 | ZAMENGO M, RYU J, KATO Y. Thermochemical performance of magnesium hydroxide-expanded graphite pellets for chemical heat pump[J]. Applied Thermal Engineering, 2014, 64(1/2): 339-347. |
27 | PAN Z H, YAN J, ZHAO C Y. Numerical analyses and optimization of tubular thermochemical heat storage reactors using axisymmetric thermal lattice Boltzmann model[J]. Chemical Engineering Science, 2019, 195: 737-747. |
28 | DING J M, GIDASPOW D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE Journal, 1990, 36(4): 523-538. |
29 | GIDASPOW D. High production circulating fluidized bed polymerization reactors[J]. Powder Technology, 2019, 357: 108-116. |
30 | ETTEHADIEH B, GIDASPOW D, LYCZKOWSKI R W. Hydrodynamics of fluidization in a semicircular bed with a jet[J]. AIChE Journal, 1984, 30(4): 529-536. |
31 | GIDASPOW D, LU H L. Collisional viscosity of FCC particles in a CFB[J]. AIChE Journal, 1996, 42(9): 2503-2510. |
32 | KUNII D, LEVENSPIEL O. Bubbling bed model for kinetic processes in fluidized beds. Gas-solid mass and heat transfer and catalytic reactions[J]. Industrial & Engineering Chemistry Process Design and Development, 1968, 7(4): 481-492. |
33 | VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19. |
34 | AGU C E, TOKHEIM L A, EIKELAND M, et al. Improved models for predicting bubble velocity, bubble frequency and bed expansion in a bubbling fluidized bed[J]. Chemical Engineering Research and Design, 2019, 141: 361-371. |
[1] | Tianxin XU, Xikun TIAN, Jun YAN, Qiang YE, Changying ZHAO. Thermochemical energy storage reaction performance of CaCO3 with TiO2 doping [J]. Energy Storage Science and Technology, 2022, 11(1): 1-8. |
[2] | Xiangyu HAN, Liang WANG, Zhiwei GE, Haoshu LING, Xipeng LIN, Haisheng CHEN, Long PENG. The thermal storage and release kinetics of Co3O4/CoO redox reaction [J]. Energy Storage Science and Technology, 2021, 10(5): 1701-1708. |
[3] | Yimo LUO, Jinjin RUI, Wei XU, Jinqing PENG, Xiaohui SHE, Nianping LI, Yulong DING. Research progress on physical property control and heat and mass transfer optimization of hydrated salt in thermochemical heat storage reactor [J]. Energy Storage Science and Technology, 2021, 10(4): 1273-1284. |
[4] | Wei LI, Zhitao ZUO, Hucan HOU, Qi LIANG, Zhihua LIN, Haisheng CHEN. Parameterization and multi-objective optimization of centrifugal compressor volute based on genetic algorithm [J]. Energy Storage Science and Technology, 2021, 10(3): 1071-1079. |
[5] | ZHAO Qianqian, ZHANG Shaohua. Estimation of zinc-bromine battery flow channel based on numerical simulation [J]. Energy Storage Science and Technology, 2016, 5(2): 228-234. |
[6] | LIU Qiannan, FU Zhongguang, BIAN Jichao. The effect of an energy storage unit on the performance micro CCHP systems [J]. Energy Storage Science and Technology, 2015, 4(6): 622-626. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||