Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (1): 359-369.doi: 10.19799/j.cnki.2095-4239.2021.0350
• Technical Economic Analysis of Energy Storage • Previous Articles Next Articles
Yun TANG1,2(), Fang YUE1,2, Kaimo GUO1,2, Lanchun LI1,2, Wangsong KE4, Wei CHEN1,2,3()
Received:
2021-07-16
Revised:
2021-08-11
Online:
2022-01-05
Published:
2022-01-10
Contact:
Wei CHEN
E-mail:tangy@mail.whlib.ac.cn;chenw@whlib.ac.cn
CLC Number:
Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wangsong KE, Wei CHEN. Analysis of the development trend and the innovation ability of an all-solid-state lithium battery technology[J]. Energy Storage Science and Technology, 2022, 11(1): 359-369.
Table 1
Top 20 research institutions in the world based on the all-solid-state lithium battery technology publications"
排序 | 机构 | 国家 | 发文量/篇 | 发文量 占比/% |
---|---|---|---|---|
1 | 中国科学院 | 中国 | 241 | 7.72 |
2 | 大阪府立大学 | 日本 | 204 | 6.54 |
3 | 中国科学院大学 | 中国 | 116 | 3.72 |
4 | 清华大学 | 中国 | 85 | 2.72 |
5 | 日本东北大学 | 日本 | 72 | 2.31 |
6 | 马里兰大学 | 美国 | 70 | 2.24 |
7 | 日本产业技术综合研究所 | 日本 | 69 | 2.21 |
8 | 东京工业大学 | 日本 | 61 | 1.96 |
9 | 复旦大学 | 中国 | 59 | 1.89 |
10 | 京都大学 | 日本 | 55 | 1.76 |
11 | 新加坡国立大学 | 新加坡 | 54 | 1.73 |
12 | 汉阳大学 | 韩国 | 52 | 1.67 |
13 | 吉森大学 | 德国 | 48 | 1.54 |
14 | 首尔大学 | 韩国 | 48 | 1.54 |
15 | 韦仕敦大学 | 加拿大 | 48 | 1.54 |
16 | 东京都立大学 | 日本 | 46 | 1.47 |
17 | 尤利希研究中心 | 德国 | 45 | 1.44 |
18 | 得克萨斯大学奥斯汀分校 | 美国 | 45 | 1.44 |
19 | 丰田汽车 | 日本 | 44 | 1.41 |
20 | 上海交通大学 | 中国 | 39 | 1.25 |
Table 2
The IPC classifications and the patent application in the field of all-solid-state lithiumbattery technology"
IPC | 专利申请数量/项 | 分类号含义 | 近三年申请量占总量的比例 |
---|---|---|---|
H01M-0010/0562 | 1603 | 由无机材料构成的固体电解质 | 43.04% |
H01M-0010/0525 | 1104 | 摇椅式电池,即其两个电极均插入或嵌入有锂的电池:锂离子电池 | 52.99% |
H01M-0010/052 | 819 | 锂蓄电池 | 42.25% |
H01M-0004/62 | 575 | 在活性物质中非活性材料成分的选择,如胶合剂、填料 | 47.48% |
H01M-0010/058 | 476 | 构造或制造是 | 46.85% |
H01M-0004/36 | 435 | 作为活性物质、活性体、活性溶液的材料的选择 | 48.05% |
H01M-0010/0565 | 385 | 高分子材料,例如凝胶型或固体型 | 51.17% |
H01M-0010/0585 | 357 | 只具有板条结构元件的,即板条式正极、板条式负极和板条式隔离件的蓄电池 | 44.54% |
H01M-0004/525 | 307 | 插入或嵌入轻金属且含铁、钴或镍的混合氧化物或氢氧化物的 | 48.86% |
H01M-0004/13 | 286 | 非水电解质蓄电池的电极 | 39.51% |
H01M-0004/04 | 268 | 一般制造方法 | 35.82% |
H01M-0004/505 | 257 | 插入或嵌入轻金属且含锰的混合氧化物或氢氧化物 | 51.36% |
H01M-0004/58 | 252 | 除氧化物或氢氧化物以外的无机化合物的 | 36.90% |
H01B-0001/06 | 248 | 由其他非金属物质组成的导电材料 | 36.29% |
H01M-0004/131 | 234 | 基于混合氧化物或氢氧化物、或氧化物或氢氧化物的混合物的电极 | 32.05% |
H01M-0004/38 | 205 | 用合金合成物作为活性材料 | 59.02% |
H01M-0004/485 | 205 | 插入或嵌入轻金属的混合氧化物或氢氧化物的 | 39.02% |
H01M-0004/139 | 179 | 制造方法 | 36.87% |
H01M-0004/66 | 165 | 材料的选择 | 41.21% |
H01M-0010/056 | 156 | 非水电解质材料制造过程或方法 | 53.85% |
H01M-0004/1391 | 150 | 基于混合氧化物或氢氧化物、或氧化物或氢氧化物的混合物的电极的制备方法 | 34.67% |
H01M-0004/134 | 143 | 基于金属、硅或合金的电极 | 60.14% |
H01M-0004/02 | 123 | 由活性材料组成或包括活性材料的电极 | 37.40% |
H01M-0006/18 | 107 | 固态电解质制造流程或方法 | 24.30% |
H01B-0013/00 | 103 | 制造导体或电缆制造的专用设备或方法 | 30.10% |
H01M-0004/136 | 102 | 基于除氧化物或氢氧化物以外的无机化合物的电极 | 34.31% |
Table 3
The distribution of patent holders and patent application time of major all-solid-state lithiumbattery technologies"
专利权人(机构) | 专利申请数量/项 | |||
---|---|---|---|---|
总量 | 2016—2020年 | 2005—2015年 | 2004年以前 | |
丰田汽车(日本) | 480 | 317 | 268 | 0 |
中国科学院(中国) | 113 | 94 | 29 | 1 |
出光兴产株式会社(日本) | 76 | 22 | 84 | 2 |
宁波大学(中国) | 75 | 29 | 46 | 0 |
日本矿业金属株式会社(日本) | 58 | 65 | 8 | 0 |
NGK公司(日本) | 56 | 48 | 54 | 0 |
古河机械金属株式会社(日本) | 52 | 26 | 26 | 0 |
比亚迪(中国) | 42 | 44 | 8 | 0 |
三星电子(韩国) | 38 | 19 | 38 | 0 |
精工爱普生(日本) | 36 | 1 | 40 | 0 |
中南大学(中国) | 35 | 23 | 12 | 0 |
三井矿业(日本) | 33 | 12 | 46 | 0 |
密歇根大学(美国) | 33 | 55 | 36 | 0 |
住友电气(日本) | 32 | 0 | 59 | 0 |
哈尔滨工业大学(中国) | 31 | 21 | 10 | 0 |
日本学习院(日本) | 27 | 0 | 40 | 0 |
日本东保钛业(日本) | 26 | 1 | 38 | 0 |
青岛昆山能源发展有限公司(中国) | 25 | 25 | 0 | 0 |
昭和电工株式会社(日本) | 24 | 37 | 0 | 1 |
东京工业大学(日本) | 24 | 28 | 20 | 0 |
桂林市电力装备科学研究院(中国) | 23 | 23 | 0 | 0 |
松下知识产权管理有限公司(日本) | 23 | 14 | 14 | 0 |
日立(日本) | 22 | 2 | 22 | 1 |
小原株式会社(日本) | 21 | 0 | 25 | 0 |
清华大学(中国) | 20 | 13 | 8 | 0 |
Table 4
The patent protection of the mainall-solid-state lithium battery technology patentees"
专利权人(机构) | 在其他国家/地区专利申请数量/项 | ||||
---|---|---|---|---|---|
日本 | 中国 | WIPO | 美国 | 韩国 | |
丰田汽车(日本) | 173 | 71 | 20 | 154 | 25 |
中国科学院(中国) | 1 | 102 | 2 | 2 | 2 |
出光兴产株式会社(日本) | 41 | 10 | 7 | 7 | 3 |
宁波大学(中国) | 0 | 75 | 0 | 0 | 0 |
日本矿业金属株式会社(日本) | 36 | 4 | 2 | 5 | 5 |
NGK公司(日本) | 13 | 2 | 9 | 20 | 10 |
古河机械金属株式会社(日本) | 52 | 0 | 0 | 0 | 0 |
比亚迪(中国) | 1 | 34 | 3 | 1 | 0 |
三星电子(韩国) | 2 | 1 | 0 | 22 | 11 |
精工爱普生(日本) | 5 | 8 | 0 | 16 | 0 |
中南大学(中国) | 0 | 35 | 0 | 0 | 0 |
三井矿业(日本) | 9 | 8 | 6 | 2 | 3 |
密西根大学(美国) | 2 | 1 | 2 | 22 | 2 |
住友电气(日本) | 4 | 3 | 1 | 12 | 4 |
哈尔滨工业大学(中国) | 0 | 31 | 0 | 0 | 0 |
日本学习院(日本) | 11 | 2 | 2 | 6 | 3 |
日本东保钛业(日本) | 11 | 2 | 2 | 4 | 3 |
青岛昆山能源发展有限公司(中国) | 0 | 23 | 0 | 2 | 0 |
昭和电工株式会社(日本) | 6 | 1 | 8 | 1 | 2 |
东京工业大学(日本) | 2 | 1 | 2 | 8 | 1 |
桂林市电力装备科学研究院(中国) | 0 | 23 | 0 | 0 | 0 |
松下知识产权管理有限公司(日本) | 6 | 4 | 4 | 6 | 0 |
日立(日本) | 6 | 0 | 9 | 6 | 1 |
小原株式会社(日本) | 21 | 0 | 0 | 0 | 0 |
清华大学(中国) | 0 | 20 | 0 | 0 | 0 |
1 | 李永峰, 李巧燕, 程国玲. 基础环境科学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2015. |
2 | 张志强. 国际科学技术前沿报告—2019[M]. 北京: 科学出版社, 2020. |
3 | FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291. |
4 | LI Y T, XU H H, CHIEN P H, et al. A perovskite electrolyte that is stable in moist air for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2018, 57(28): 8587-8591. |
5 | 刘鲁静, 贾志军, 郭强, 等. 全固态锂离子电池技术进展及现状[J]. 过程工程学报, 2019, 19(5): 900-909. |
LIU L J, JIA Z J, GUO Q, et al. Research progress and current status of all-solid-state lithium battery[J]. The Chinese Journal of Process Engineering, 2019, 19(5): 900-909. | |
6 | 陈龙, 池上森, 董源, 等. 全固态锂电池关键材料—固态电解质研究进展[J]. 硅酸盐学报, 2018, 46(1): 21-34. |
CHEN L, CHI S S, DONG Y, et al. Research progress of key materials for all-solid-state lithium batteries[J]. Journal of the Chinese Ceramic Society, 2018, 46(1): 21-34. | |
7 | KRAVCHYK K V, OKUR F, KOVALENKO M V. Break-even analysis of all-solid-state batteries with Li-garnet solid electrolytes[J]. ACS Energy Letters, 2021, 6(6): 2202-2207. |
8 | 吕璐, 周雷, TUFAIL M K, 等. 高离子电导率硫化物固态电解质的空气稳定性研究进展[J]. 中国科学: 化学, 2020, 50(9): 1031-1044. |
LU L, ZHOU L, TUFAIL M K, et al. Advances in air stability of sulfide solid electrolytes with high ion conductivity[J]. Scientia Sinica (Chimica), 2020, 50(9): 1031-1044. | |
9 | CUI Y, WAN J, YE Y, et al. A fireproof, lightweight, polymer-polymer solid-state electrolyte for safe lithium batteries[J]. Nano Letters, 2020, 20(3): 1686-1692. |
10 | TANG S, LAN Q, XU L, et al. A novel cross-linked nanocomposite solid-state electrolyte with super flexibility and performance for lithium metal battery[J]. Nano Energy, 2020, 71: doi:10.1016/j.nanoen.2020.104600. |
11 | WANG Y, ZANELOTTI C J, WANG X, et al. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways[J]. Nature Materials, 2021, 20(9): 1255-1263. |
12 | FAN L Z, HE H C, NAN C W. Tailoring inorganic-polymer composites for the mass production of solid-state batteries[J]. Nature Reviews Materials, 2021, 6(11): 1003-1019. |
13 | KIM D H, LEE Y H, SONG Y B, et al. Thin and flexible solid electrolyte membranes with ultrahigh thermal stability derived from solution-processable Li argyrodites for all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2020, 5(3): 718-727. |
14 | LEE Y G, FUJIKI S, JUNG C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5(4): 299-308. |
15 | PAN K, ZHANG L, QIAN W, et al. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries[J]. Advanced Materials, 2020, 32(17): doi:10.1002/adma.202000399. |
16 | ZHANG Z H, WU L P, ZHOU D, et al. Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries[J]. Nano Letters, 2021, 21(12): 5233-5239. |
17 | ALBERTUS P, ANANDAN V, BAN C M, et al. Challenges for and pathways toward Li-metal-based all-solid-state batteries[J]. ACS Energy Letters, 2021, 6(4): 1399-1404. |
18 | TIAN Y, ZENG G, RUTT A, et al. Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid decarbonization[J]. Chemical Reviews, 2021, 121(3): 1623-1669. |
19 | CAO D X, SUN X, LI Q, et al. Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations[J]. Matter, 2020, 3(1): 57-94. |
20 | CHENG E J, SHARAFI A, SAKAMOTO J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte[J]. Electrochimica Acta, 2017, 223: 85-91. |
21 | HAN F D, WESTOVER A S, YUE J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nature Energy, 2019, 4(3): 187-196. |
[1] | Wei ZENG, Junjie XIONG, Jianlin LI, Suliang MA, Yiwen WU. Optimal configuration of energy storage power station in multi-energy system based on weight adaptive whale optimization algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2241-2249. |
[2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[3] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[4] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[5] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[6] | Shufeng DONG, Lingchong LIU, Kunjie TANG, Haiqi ZHAO, Chengsi XU, Liheng LIN. The teaching method of energy storage control experiment based on Simulink and low-code controller [J]. Energy Storage Science and Technology, 2022, 11(7): 2386-2397. |
[7] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[8] | Xingzhong YUAN, Bin HU, Fan GUO, Huan YAN, Honggang JIA, Zhou SU. EU energy storage policies and market mechanism and its reference to China [J]. Energy Storage Science and Technology, 2022, 11(7): 2344-2353. |
[9] | Guojing LIU, Bingjie LI, Xiaoyan HU, Fen YUE, Jiqiang XU. Australia policy mechanisms and business models for energy storage and their applications to china [J]. Energy Storage Science and Technology, 2022, 11(7): 2332-2343. |
[10] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[11] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[12] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[13] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[14] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[15] | SU Yaogang, WU Xiaonan, LIAO Borui, LI Shuang. Analysis of novel liquefied-air energy-storage system coupled with LNG cold energy and ORC [J]. Energy Storage Science and Technology, 2022, 11(6): 1996-2006. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||