Energy Storage Science and Technology ›› 2013, Vol. 2 ›› Issue (4): 331-341.doi: 10.3969/j.issn.2095-4239.2013.04.001
• Invited reviews • Next Articles
XU Xiaoxiong1, QIU Zhijun1, GUAN Yibiao2, HUANG Zhen1, JIN Yi2
Received:
2013-04-28
Revised:
2013-05-30
Online:
2013-08-19
Published:
2013-08-19
CLC Number:
XU Xiaoxiong, QIU Zhijun, GUAN Yibiao, HUANG Zhen, JIN Yi. All-solid-state lithium-ion batteries:State-of-the-art development and perspective[J]. Energy Storage Science and Technology, 2013, 2(4): 331-341.
[1] Zhang Wenliang(张文亮),Wu Bin(武斌),Li Wufeng(李武峰),Lai Xiaokang(来小康). Discussion on development trend of battery electric vehicles in China and its energy supply mode[J]. Power System Technology (电网技术),2009,33(4):1-5. [2] Hu Yingying(胡英瑛),Wen Zhaoyin(温兆银),Rui Kun(芮琨),Wu Xiangwei(吴相伟). State-of-the-art research and development status of sodium batteries[J]. Energy Storage Science and Technology (储能科学与技术),2013,2(2):81-90. [3] Peng Jiayue(彭佳悦),Zu Chenxi(祖晨曦),Li Hong(李泓). Fundamental scientific aspects of lithium batteries(I) Thermodynamic calculations of theoretical energy densities of chemical energy storage systems[J]. Energy Storage Science and Technology (储能科学与技术),2013,2(1):55-62. [4] Zhang Wenliang(张文亮),Qiu Ming(丘明),Lai Xiaokang(来小康). Application of energy storage technologies in power grids[J]. Power System Technology (电网技术),2008,32(7):1-9. [5] Lu Xia(卢侠),Li Hong(李泓). Fundamental scientific aspects of lithium batteries(II) Defect chemistry in batteries materials[J]. Energy Storage Science and Technology (储能科学与技术),2013,2(2):157-164. [6] Wen Zhaoyin(温兆银). Sodium sulfur cell and its energy storage application[J]. Shanghai Energy Conservation( 上海节能),2007(2):7-10. [7] Zhang Huamin(张华民),Zhou Hantao(周汉涛),Zhao Ping(赵平),Yi Baolian(衣宝廉). Actuality and prospect of energy storage technologies[J]. Energy Engineering (能源工程),2005,1(3):1-7. [8] Hu Xuejie(黄学杰). Li-ion battery and its key materials[J]. Materials China( 中国材料进展),2010,29(8):46-52. [9] Zhao Xinbing(赵新兵),Xie Jian(谢健). Recent development of LiFePO 4 cathode materials for lithium-ion batteries[J]. Chinese Journal of Mechanical Engineering (机械工程学报),2007,43(1):69-76. [10] Xu X X,Wen Z Y,Wu J G,Yang X L. Preparation and electrical properties of Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 glass-ceramics by the citric acid-assisted sol-gel method[J]. Solid State Ionics ,2007,178(1-2):29-34. [11] Xu X X,Wen Z Y,Yang X L,Zhang J C,Gu Z H. High lithium ion conductivity glass-ceramics in Li 2 O-Al 2 O 3 -TiO 2 -P 2 O 5 from nanoscaled glassy powders by mechanical milling[J]. Solid State Ionics ,2006,177(26-32):2611-2615. [12] Liu Wenyuan(刘文元),Fu Zhengwen(傅正文),Qin Qizong(秦启宗). Studies on lithium phosohorous oxynitride electrolyte thin films and a new all-solid-state thin film lithium battery[J]. Acta Chimica Sinica (化学学报),2004(22):2223-2227. [13] Baba M,Kumagai N,Fujita N, et al. Fabrication and electrochemical characteristics of all-solid-state lithium-ion rechargeable batteries composed of LiMn 2 O 4 positive and V 2 O 5 negative electrodes[J]. Journal of Power Sources ,2001,7(97-98):798-800. [14] Qiu Weili(邱玮丽), Yang Qinghe(杨清河), Ma Xiaohua(马晓华), et al . Research on PEO-based dry solid polymer electrolytes for rechargeable lithium batterises[J]. Chinese Journal of Power Sources (电池技术),2004,28(7):440-448 [15] Zhang S S,Ervin M H,Xu K,Jow T R. Microporous poly (acrylonitrile-methyl methacrylate) membrane as a separator of rechargcable lithium battery[J]. Electrochimica Acta ,2004,49(20):3339-3345. [16] Kuwata N,Kawamura J,Toribami K,Hattori T. In solid state ionics:the science and technology of ions in motion[C]//(proc. 9th Asian Conf. solid state ionics),World Sci.Publ.Co.,Singapore,2004,637. [17] Kuwata N,Kawamura J,Toribami K,Hattori T,Sata N. Thin-film lithium-ion battery with amorphous solid electrolyte fabricated by pulsed laser deposition[J]. Electrochemistry Communications ,2004,6(4):417-420. [18] Bates J B,Dudney N J,Neudecker B, et al . Thin-film lithium and lithium-ion batteries[J]. Solid State Ionics ,2000,135(1-4):33-45. [19] Dudney N J,Bates J B,Zuhr R A,Young S,Robertson J D,Jun H P,Hackney S A. Nanocrystalline Li x Mn 2- y O 4 cathodes for solid-state thin-film rechargeable lithium batteries[J]. Journal of the Electrochemical Society ,1999,146(7):2455-2464. [20] Neudecker B J,Dudney N J,Bates J B. "Lithium-free" thin-film battery with in situ plated li anode[J]. Journal of the Electrochemical Society ,2000,147(2):517-523. [21] Neudecker B J,Zuhr R A,Robertson J D,Bates J B. Lithium manganese nickel oxides Li x (Mn y Ni 1- y ) 2- x O 2 I. Synthesis and characterization of thin films and bulk phases[J]. Journal of the Electrochemical Society ,1998,145(12):4148-4159. [22] Neudecker B J,Zuhr R A,Robertson J D,Bates J B. Lithium manganese nickel oxides Li x (Mn y Ni 1- y ) 2- x O 2 (II) Electrochemical studies on thin-film batteries[J]. Journal of the Electrochemical Society ,1998,145(12):4160-4168. [23] Neudecker B J,Zuhr R A,Bates J B. Lithium silicon tin oxynitride(Li y SiTON):High-performance anode in thin-film lithium-ion batteries for microelectronics[J]. Journal of Power Sources ,1999,9(81-82):27-32. [24] MacGlashan G S,Andreev Y G,Bruce P. Structure of the polymer electrolyte poly (ethylene oxide) 6 :LiAsF 6 [J]. Nature ,1999,398:792-794. [25] Croce F,Appetecchi G B,Persi L,Scrosati B. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature ,1998,394:456-458. [26] Kariatsumari K. Next-gen batteries going all-solid:Demand for large size batteries in EVs and stationary use driving development[N]. Nikkei Electronics Asia ,2010-07-01. [27] 辛江. Kolibri电池,让电动车畅通无阻[N]. 第一财经周刊,2011-11-16. [28] Noriaki K,Kenji H,Yuichiro Y, et al . A lithium superionic conductor[J]. Nat. Mater. ,2011,10(9):682-687. [29] Keiichi M,Akitoshi H,Masahiro T. Crystallization process for superionic Li 7 P 3 S 11 glass-ceramic electrolytes[J]. Journal of the American Ceramic Society ,2010,94(6):1779-1783. [30] Liu Z C,Fu W J,Payzant E A, et al . Anomalous high ionic conductivity of nanoporous β-Li 3 PS 4 [J]. Journal of the American Chemical Society ,2013,135:975-978. [31] 许晓雄,姚霞银,刘兆平,等. 全固态锂二次电池电解质材料,其制备方法及全固态锂二次电池:中国,201210050031.9[P]. 2012-02-29. [32] Chen Liquan(陈立泉). Hybrid electric vehicles and their batteries[J]. Battery Bimonthly (电池),2000,30(3):98-100. [33] Owens B B. Solid-state electrolytes:Overview of materials and applications during the last third of the twentieth century[J]. J ournal of Power Sources ,2000,90(1):2-8. [34] Xu Xiaoxiong(许晓雄),Wen Zhaoyin(温兆银). Glass and glass-ceramics solid electrolytes for lithium-ion battery[J]. Journal of Inorganic Materials (无机材料学报),2005,20(1):21-26. [35] Zhu X J,Shen O C,Xu X X, et al . Direct observation of lithium-ion transport under an electrical field in Li x CoO 2 nanograins[J]. Scientific Reports ,2013,3:1-8. [36] Ohta N,Takada K,Zhang L Q,Ma R Z,Osada M,Sasaki T. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J]. Advanced Materials ,2006,18(17):2226-2229. [37] Maier J. Nanoionics:Ion transport and electrochemical storage in confined systems[J]. Nature Materials ,2005,4(11):805-815. [38] Xu X X,Takada K,Fukuda K, et al . Tantalum oxide nanomesh as self-standing one nanometre thick electrolyte[J]. Energy & Environmental Science ,2011,4(9):3509-3512. [39] Xu X X,Takada K,Watanabe K,e t al . Self-organized core-shell structure for high-power electrode in solid-state lithium batteries[J]. Chemistry of Materials ,2011,23(17):3798-3804. [40] Armand M,Tarascon J M. Building better batteries[J]. Nature ,2008,451:652-657. [41] Croce F,Appetecchi G B,Persi L,Scrosati B. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature ,1998,394:456-458. [42] Sasaki T,Watanabe M,Hashizume H,Yamada H,Nakazawa H. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. pairwise association of nanosheets and dynamic reassembling process initiated from it[J]. Journal of the American Chemical Society ,1996,118(35):8329-8335. [43] Omomo Y,Sasaki T,Wang L Z,Watanabe M. Fabrication and characterization of multilayer ultrathin films of exfoliated MnO 2 nanosheets and polycations[J]. Journal of the American Chemical Society ,2003,15(15):2873-2878. [44] Osada M,Ebina Y,Takada K,Sasaki T. Gigantic magneto-optical effects in multilayer assemblies of two-dimensional titania nanosheets[J]. Advance Materials ,2006,18(3):295-299. [45] Osada M,Ebina Y,Funakubo H,Yokoyama S,Kiguchi T,Takada K,Sasaki T. High- κ dielectric nanofilms fabricated from titania nanosheets[J]. Advance Materials ,2006,18(8):1023-1027. |
[1] | Wei ZENG, Junjie XIONG, Jianlin LI, Suliang MA, Yiwen WU. Optimal configuration of energy storage power station in multi-energy system based on weight adaptive whale optimization algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2241-2249. |
[2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[3] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[4] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[5] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[6] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[7] | Xingzhong YUAN, Bin HU, Fan GUO, Huan YAN, Honggang JIA, Zhou SU. EU energy storage policies and market mechanism and its reference to China [J]. Energy Storage Science and Technology, 2022, 11(7): 2344-2353. |
[8] | Shufeng DONG, Lingchong LIU, Kunjie TANG, Haiqi ZHAO, Chengsi XU, Liheng LIN. The teaching method of energy storage control experiment based on Simulink and low-code controller [J]. Energy Storage Science and Technology, 2022, 11(7): 2386-2397. |
[9] | Guojing LIU, Bingjie LI, Xiaoyan HU, Fen YUE, Jiqiang XU. Australia policy mechanisms and business models for energy storage and their applications to china [J]. Energy Storage Science and Technology, 2022, 11(7): 2332-2343. |
[10] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[11] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[12] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[13] | FENG Jinxin, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on phase-change emulsions [J]. Energy Storage Science and Technology, 2022, 11(6): 1968-1979. |
[14] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[15] | SU Yaogang, WU Xiaonan, LIAO Borui, LI Shuang. Analysis of novel liquefied-air energy-storage system coupled with LNG cold energy and ORC [J]. Energy Storage Science and Technology, 2022, 11(6): 1996-2006. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||