Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (3): 1026-1034.doi: 10.19799/j.cnki.2095-4239.2021.0543
Previous Articles Next Articles
Yun LI(), Wang YANG, Yongfeng LI()
Received:
2021-10-19
Revised:
2021-11-16
Online:
2022-03-05
Published:
2022-03-11
Contact:
Yongfeng LI
E-mail:yunli2016213123@163.com;yfli@cup.edu.cn
CLC Number:
Yun LI, Wang YANG, Yongfeng LI. Synthesis of petroleum asphalt-based MoS2/porous carbon material and its Li-storage performance[J]. Energy Storage Science and Technology, 2022, 11(3): 1026-1034.
Table 1
Comparisons of electrochemical performance of different MoS2-based materials as LIBs anodes"
碳材料 | 电流密度/(mA/g) | 循环次数 | 容量/(mA·h/g) | 参考文献 |
---|---|---|---|---|
三维石墨烯@碳纳米管@二硫化钼杂化物 | 100 | 200 | 600 | [ |
二硫化钼纳米片/碳材料 | 5000 | 1000 | 500 | [ |
二硫化钼/碳材料 | 100 | 100 | 1129 | [ |
1000 | 100 | 339 | ||
三维二硫化钼/碳纳米球 | 1000 | — | 612 | [ |
二硫化钼/氮掺杂石墨烯 | 100 | 100 | 750 | [ |
氮掺杂碳/二硫化钼纳米球 | 150 | 100 | 1055 | [ |
MoS2/SPC | 500 | 400 | 1069 | 本工作 |
1 | HU H, WU M B. Heavy oil-derived carbon for energy storage applications[J]. Journal of Materials Chemistry A, 2020, 8(15): 7066-7082. |
2 | WANG S C, LIU G, WANG L Z. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting[J]. Chemical Reviews, 2019, 119(8): 5192-5247. |
3 | WANG H, ZHU C, CHAO D, et al. Nonaqueous hybrid lithium-ion and sodium-ion capacitors[J]. Advanced Materials, 2017, 29(46): doi: 10.1002/adma.201702093. |
4 | ZHOU X L, LIU Q R, JIANG C L, et al. Strategies towards low-cost dual-ion batteries with high performance[J]. Angewandte Chemie, 2020, 59(10): 3802-3832. |
5 | SAUREL D, ORAYECH B, XIAO B W, et al. From charge storage mechanism to performance: A roadmap toward high specific energy sodium-ion batteries through carbon anode optimization[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201703268. |
6 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
7 | ZHU Y L, WANG Y X, GAO C, et al. CoMoO4-N-doped carbon hybrid nanoparticles loaded on a petroleum asphalt-based porous carbon for lithium storage[J]. New Carbon Materials, 2020, 35(4): 358-370. |
8 | HE L, SUN Y R, WANG C L, et al. High performance sulphur-doped pitch-based carbon materials as anode materials for sodium-ion batteries[J]. New Carbon Materials, 2020, 35(4): 420-427. |
9 | 陆浩, 刘柏男, 禇赓, 等. 锂离子电池负极材料产业化技术进展[J]. 储能科学与技术, 2016, 5(2): 109-119. |
LU H, LIU B N, CHU G, et al. Technology review of anode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(2): 109-119. | |
10 | QIAN T, HUANG Y C, ZHANG M D, et al. Non-corrosive and low-cost synthesis of hierarchically porous carbon frameworks for high-performance lithium-ion capacitors[J]. Carbon, 2021, 173: 646-654. |
11 | PENG T Y, TAN Z H, ZHANG M D, et al. Facile and cost-effective manipulation of hierarchical carbon nanosheets for pseudocapacitive lithium/potassium storage[J]. Carbon, 2020, 165: 296-305. |
12 | WU J X, CAO Y L, ZHAO H M, et al. The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries[J]. Carbon Energy, 2019, 1(1): 57-76. |
13 | 杨旺, 李瑞, 候利强, 等. 石油沥青基富氮/硫掺杂多孔炭材料的制备及其对电极性能[J]. 新型炭材料, 2020, 35(3): 253-261. |
YANG W, LI R, HOU L Q, et al. Synthesis of a petroleum asphalt-based nitrogen/sulfur doped porous carbon material and its use as the counter electrode of dye-sensitized solar cells[J]. New Carbon Materials, 2020, 35(3): 253-261. | |
14 | GAO C, FENG J Z, DAI J R, et al. Manipulation of interlayer spacing and surface charge of carbon nanosheets for robust lithium/sodium storage[J]. Carbon, 2019, 153: 372-380. |
15 | LI Y, YANG W, TU Z Q, et al. Water-soluble salt-templated strategy to regulate mesoporous nanosheets-on-network structure with active mixed-phase CoO/Co3O4 nanosheets on graphene for superior lithium storage[J]. Journal of Alloys and Compounds, 2021, 857: doi: 10.1016/j.jallcom.2020.157626. |
16 | XIE D, XIA X H, WANG Y D, et al. Nitrogen-doped carbon embedded MoS2 microspheres as advanced anodes for lithium- and sodium-ion batteries[J]. Chemistry—A European Journal, 2016, 22(33): 11617-11623. |
17 | SAITO R, HOFMANN M, DRESSELHAUS G, et al. Raman spectroscopy of graphene and carbon nanotubes[J]. Advances in Physics, 2011, 60(3): 413-550. |
18 | LIU J, CHEN Z Q. Remaining useful life prediction of lithium-ion batteries based on health indicator and Gaussian process regression model[J]. IEEE Access, 2019, 7: 39474-39484. |
19 | LI X Y, YUAN C G, WANG Z P. Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression[J]. Journal of Power Sources, 2020, 467: doi: 10.1016/j.jpowsour.2020.228358. |
20 | XIONG T, SU H, YANG F, et al. Harmonizing self-supportive VN/MoS2 pseudocapacitance core-shell electrodes for boosting the areal capacity of lithium storage[J]. Materials Today Energy, 2020, 17: doi: 10.1016/j.mtener.2020.100461. |
21 | ZHAO X W, LIU Z C, XIAO W Y, et al. Low crystalline MoS2 nanotubes from MoS2 nanomasks for lithium ion battery applications[J]. ACS Applied Nano Materials, 2020, 3(8): 7580-7586. |
22 | DONG C F, GUO L J, LI H B, et al. Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries[J]. Energy Storage Materials, 2020, 25: 679-686. |
23 | HUANG Z Y, HAN X Y, CUI X, et al. Vertically aligned VS2 on graphene as a 3D heteroarchitectured anode material with capacitance-dominated lithium storage[J]. Journal of Materials Chemistry A, 2020, 8(12): 5882-5889. |
24 | 张香华, 骆微, 芮先宏, 等. 钠离子电池正极材料VOPO4 ·2H2O纳米片的合成与电化学性能[J]. 储能科学与技术, 2020, 9(5): 1410-1415. |
ZHANG X H, LUO W, RUI X H, et al. Preparation and electrochemical performance of VOPO4 ·2H2O nanosheet cathode for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1410-1415. | |
25 | ZHU X Y, ZHAO W, SONG Y Z, et al. In situ assembly of 2D conductive vanadium disulfide with graphene as a high-sulfur-loading host for lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(20): 1800201. |
26 | 周思宇, 唐正, 范景瑞, 等. 过渡金属氧化物微纳阵列在钠离子电池中的研究进展[J]. 储能科学与技术, 2020, 9(5): 1383-1395. |
ZHOU S Y, TANG Z, FAN J R, et al. Research progress of transition metal oxide micro-nano structured arrays for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1383-1395. | |
27 | REN J, REN R P, LV Y K. A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery[J]. Chemical Engineering Journal, 2018, 353: 419-424. |
28 | MA L X, ZHAO B L, WANG X S, et al. MoS2 nanosheets vertically grown on carbonized corn stalks as lithium-ion battery anode[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22067-22073. |
29 | ZHAO G, CHENG Y L, SUN P X, et al. Biocarbon based template synthesis of uniform lamellar MoS2 nanoflowers with excellent energy storage performance in lithium-ion battery and supercapacitors[J]. Electrochimica Acta, 2020, 331: doi: 10.1016/j.electacta.2019.135262. |
30 | ZHOU Z P, CHEN F, WU L, et al. Heteroatoms-doped 3D carbon nanosphere cages embedded with MoS2 for lithium-ion battery[J]. Electrochimica Acta, 2020, 332: doi: 10.1016/j.electacta.2019.135490. |
31 | CHEN B, MENG Y H, HE F, et al. Thermal decomposition-reduced layer-by-layer nitrogen-doped graphene/MoS2/nitrogen-doped graphene heterostructure for promising lithium-ion batteries[J]. Nano Energy, 2017, 41: 154-163. |
[1] | Shangsen CHI, Yidong JIANG, Qingrong WANG, Ziwei YE, Kai YU, Jun MA, Jun JIN, Jun WANG, Chaoyang WANG, Zhaoyin WEN, Yonghong DENG. The liquid electrolyte modified interface between garnet-type solid-state electrolyte and lithium anode [J]. Energy Storage Science and Technology, 2021, 10(3): 914-924. |
[2] | LU Tianjiao, HUANG Zhimei, XIE Meilan, SHEN Yue. Lithium anode stabilization via AgF pretreatment and its application in a Li-oxygen battery [J]. Energy Storage Science and Technology, 2020, 9(3): 807-812. |
[3] | WANG Weikun, WANG Anbang, JIN Zhaoqing. Challenges on practicalization of lithium sulfur batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 593-597. |
[4] | WANG Chenglin, QU Shiji, LI Jingze. Protective mechanism of the Li alloy film-buffered Li metal anode [J]. Energy Storage Science and Technology, 2020, 9(2): 368-374. |
[5] | WANG Jiulin. The opinions for lithium sulfur battery [J]. Energy Storage Science and Technology, 2020, 9(1): 1-4. |
[6] | CHEN Xiang, HOU Tingzheng, PENG Hongjie, CHENG Xinbing, HUANG Jiaqi, ZHANG Qiang. Review on the applications of first-principles calculation in lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 500-521. |
[7] | GAO Jing1,2, REN Wenfeng1, CHEN Jian1. Research progress of all solid-state lithium sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 557-571. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||