Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (3): 1019-1025.doi: 10.19799/j.cnki.2095-4239.2021.0542
Previous Articles Next Articles
Miao WU(), Guiqing ZHAO, Zhongzhu QIU(), Baofeng WANG
Received:
2021-10-19
Revised:
2021-11-29
Online:
2022-03-05
Published:
2022-03-11
Contact:
Zhongzhu QIU
E-mail:misty96@163.com;qiuzhongzhu@shiep.edu.cn
CLC Number:
Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025.
1 | 李倩, 赵彦云, 刘冰洁. 新能源产业政策的量化分析及其环保效应[J]. 北京理工大学学报(社会科学版), 2021, 23(4): 30-39. |
LI Q, ZHAO Y Y, LIU B J. Quantitative analysis of new energy industry policy and its environmental protection effect[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2021, 23(4): 30-39. | |
2 | 王志轩. 构建以新能源为主体的新型电力系统框架[J]. 阅江学刊, 2021, 13(3): 35-43. |
WANG Z X. Construction of a new power system framework with new energy as the main body[J]. Yuejiang Academic Journal, 2021, 13(3): 35-43. | |
3 | 周圣哲. 燃料电池电动汽车能量管理系统控制策略研究[D]. 青岛: 青岛大学, 2019. |
ZHOU S Z. Research on control strategy of energy management system for fuel cell electric vehicle[D]. Qingdao: Qingdao University, 2019. | |
4 | CHAN C K, PENG H L, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35. |
5 | PAN P, CHEN L H, WANG F, et al. Cu2NiSnS4 nanosphere array on carbon cloth as free-standing and binder-free electrodes for energy storage[J]. Electrochimica Acta, 2018, 260: 305-313. |
6 | 畅波. 锂离子电池硅基复合负极材料的制备及其电化学性能的研究[D]. 太原: 太原理工大学, 2017. |
CHANG B. Preparation and electrochemical performance of silicon-based composite anode materials for lithium-ion batteries[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
7 | 闫琦, 兰元其, 姚文娇, 等. 聚阴离子型二次离子电池正极材料研究进展[J]. 储能科学与技术, 2021, 10(3): 872-886. |
YAN Q, LAN Y Q, YAO W J, et al. Recent development of polyanionic cathodes for second ion batteries[J]. Energy Storage Science and Technology, 2021, 10(3): 872-886. | |
8 | HE F, MA L. Thermal management in hybrid power systems using cylindrical and prismatic battery cells[J]. Heat Transfer Engineering, 2016, 37(6): 581-590. |
9 | AL-JAWFI Ibrahim, 赵佳琦, 师萌, 等. Al掺杂锰酸锂材料在水系锂离子电池中的循环稳定性[J]. 储能科学与技术, 2021, 10(4): 1330-1337. |
ALJAWFI I, ZHAO J Q, SHI M, et al. High electrochemical stability of Al-doped spinel LiMn2O4 cathode material for aqueous lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(4): 1330-1337. | |
10 | MAEDA K, NOGAMI M, ARAFUNE K, et al. Application of industrial crystallization model for charge-discharge cycle of lead-acid batteries at high pressure[J]. Journal of Chemical Engineering of Japan, 2015, 48(10): 815-820. |
11 | GALUSHKIN N, YAZVINSKAYA N, GALUSHKIN D, et al. Probability investigation of thermal runaway in nickel-cadmium batteries with sintered, pasted and pressed electrodes[J]. International Journal of Electrochemical Science, 2015, 10(8): 6645-6650. |
12 | 周小龙, 欧学武, 刘齐荣, 等. 双离子电池研究进展[J]. 储能科学与技术, 2020, 9(2): 551-568. |
ZHOU X L, OU X W, LIU Q R, et al. Research progress on dual-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 551-568. | |
13 | ONO K. Energetically self-sustaining electric power generation system based on the combined cycle of electrostatic induction hydrogen electrolyzer and fuel cell[J]. Electrical Engineering in Japan, 2016, 195(1): 10-23. |
14 | KIM H, HONG J, PARK K Y, et al. Aqueous rechargeable Li and Na ion batteries[J]. Chemical Reviews, 2014, 114(23): 11788-11827. |
15 | LI Z, YOUNG D, XIANG K, et al. Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system[J]. Advanced Energy Materials, 2013, 3: 290-294. |
16 | FUKUZUMI S. Production of liquid solar fuels and their use in fuel cells[J]. Joule, 2017, 1(4): 689-738. |
17 | ZHANG L Y, CHEN L, ZHOU X F, et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system[J]. Advanced Energy Materials, 2015, 5(2): doi: 10.1002/aenm.201400930. |
18 | YAN J, WANG J, LIU H, et al. Rechargeable hybrid aqueous batteries[J]. Journal of Power Sources, 2012, 216: 222-226. |
19 | CHEN R J, LUO R, HUANG Y X, et al. Advanced high energy density secondary batteries with multi-electron reaction materials[J]. Advanced Science, 2016, 3(10): doi: 10.1002/advs.201600051. |
20 | WANG Y, ZHANG L J, ZHANG F, et al. High-performance Zn-graphite battery based on LiPF6 single-salt electrolyte with high working voltage and long cycling life[J]. Journal of Energy Chemistry, 2021, 58: 602-609. |
21 | LIU Z, CUI T, PULLETIKURTHI G, et al. Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries[J]. Angewandte Chemie, 2016, 55(8): 2889-2893. |
22 | MING J, GUO J, XIA C, et al. Zinc-ion batteries: Materials, mechanisms, and applications[J]. Materials Science and Engineering: R: Reports, 2019, 135: 58-84. |
23 | LI C, ZHENG C M, JIANG H L, et al. Conductive flower-like Ni-PTA-Mn as cathode for aqueous zinc-ion batteries[J]. Journal of Alloys and Compounds, 2021, 882: doi: 10.1016/j.jallcom.2021.160587. |
24 | XU C J, LI B H, DU H D, et al. Energetic zinc ion chemistry: The rechargeable zinc ion battery[J]. Angewandte Chemie, 2012, 51(4): 933-935. |
25 | ZHOU J L, YANG X L, ZHANG Y J, et al. Interconnected NiCo2O4 nanosheet arrays grown on carbon cloth as a host, adsorber and catalyst for sulfur species enabling high-performance Li-S batteries[J]. Nanoscale Advances, 2021, 3(6): 1690-1698. |
26 | HOUSEL L M, WANG L, ABRAHAM A, et al. Investigation of α-MnO2 tunneled structures as model cation hosts for energy storage[J]. Accounts of Chemical Research, 2018, 51(3): 575-582. |
27 | ZHANG N, CHENG F Y, LIU J X, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nature Communications, 2017, 8: doi: 10.1038/s41467-017-00467-x. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[3] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[4] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[5] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[6] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[7] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[8] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[9] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
[10] | Hongxiang JI, Zhou JIN, Mengyu TIAN, Yida WU, Yuanjie ZHAN, Feng TIAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2021 to Sept. 30, 2021) [J]. Energy Storage Science and Technology, 2021, 10(6): 2411-2427. |
[11] | Feng TIAN, Hongxiang JI, Mengyu TIAN, Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Yida WU, Yuanjie ZHAN, Zhou JIN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2021 to Jul. 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(5): 1854-1868. |
[12] | Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2021 to May 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(4): 1237-1252. |
[13] | Qiang CHEN, Min LI, Jingfa LI. Application of Prussian blue analogs and their derivatives in potassium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. |
[14] | Yongli HENG, Zhenyi GU, Jinzhi GUO, Xinglong WU. Na3V2(PO4)3@C cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 938-944. |
[15] | Xiaoyu SHEN, Ronghan QIAO, Guanjun CENG, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Feb. 1, 2021 to Mar. 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(3): 958-973. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||