Energy Storage Science and Technology ›› 2013, Vol. 2 ›› Issue (4): 383-401.doi: 10.3969/j.issn.2095-4239.2013.04.007
• Expert lectures • Previous Articles Next Articles
GAO Jian, LV Yingchun, LI Hong
Received:
2013-05-20
Revised:
2013-06-01
Online:
2013-08-19
Published:
2013-08-19
CLC Number:
GAO Jian, LV Yingchun, LI Hong. Fundamental scientific aspects of lithium batteries (IV) --Phase transition and phase diagram (2)[J]. Energy Storage Science and Technology, 2013, 2(4): 383-401.
[1] Derosa P A,Balbuena P B. A lattice-gas model study of lithium intercalation in graphite [J]. J. Electrochem. Soc. ,1999,146(10):3630-3638. [2] Yamaki J,Egashira M,Okada S. Potential and thermodynamics of graphite anodes in Li-ion cells [J]. J. Electrochem. Soc. ,2000,147(2):460-465. [3] Marquez A,Vargas A,Balbuena P B. Computational studies of lithium intercalation in model graphite in the presence of tetrahydrofuran [J]. J. Electrochem. Soc. ,1998,145(10):3328-3334. [4] Nalimova V A,Guerard D,Lelaurain M, et al . X-ray-investigation of highly saturated Li-graphite intercalation compound [J]. Carbon ,1995,33(2):177-181. [5] Dahn J R. Phase-diagram of Li x C 6 [J]. Phys. Rev. B ,1991,44(17):9170-9177. [6] Hu Jin(胡进). Investigations of anode materials with nano-structure for lithium ion battery[D]. Beijing:Institute of Physics,Chinese Academy of Sciences,2005. [7] Woo K C,Mertwoy H,Fischer J E, et al . Experimental phase-diagram of lithium-intercalated graphite [J]. Phys. Rev. B ,1983,27(12):7831-7834. [8] Guerard D,Herold A. Intercalation of lithium into graphite and other carbons [J]. Carbon ,1975,13(4):337-345. [9] Reimers J N,Dahn J R. Electrochemical and Insitu X-ray- diffractionstudies of lithium intercalation in Li x CoO 2 [J]. J. Electrochem. Soc. ,1992,139(8):2091-2097. [10] Reimers J N,Dahn J R,Vonsacken U. Effects of impurities on the electrochemical properties of LiCoO 2 [J]. J. Electrochem. Soc. ,1993,140(10):2752-2754. [11] Ohzuku T,Ueda A. Solid-state redox reactions of Li x CoO 2 (R-3m) for 4 Volt secondary lithium cells [J]. J. Electrochem. Soc. ,1994,141(11):2972-2977. [12] Shao H Y,Levasseur S,Weill F, et al . Probing lithium and vacancy ordering in O 3 layered Li x CoO 2 ( x approximate to 0.5) An electron diffraction study [J]. J. Electrochem. Soc. ,2003,150(3):A366-A373. [13] Menetrier M,Saadoune I,Levasseur S, et al . The insulator-metal transition upon lithium deintercalation from LiCoO 2 :Electronic properties and Li-7 NMR study [J]. J. Mater. Chem. ,1999,9(5):1135-1140. [14] Marianetti C A,Kotliar G,Ceder G. A first-order Mott transition in LixCoO 2 [J]. Nat. Mater. ,2004,3(9):627-631. [15] Van D V A,Aydinol M K,Ceder G. First-Principles evidence for stage ordering in Li x CoO 2 [J]. J. Electrochem. Soc. ,1998,145(6):2149-2155. [16] Mizushima K,Jones P C,Wiseman P J, et al . Li x CoO 2 (oless-thanxless-than-or-equal-to1) A new cathode material for batteries of high-energy density [J]. Mater. Res. Bull. ,1980,15(6):783-789. [17] Amatucci G G,Tarascon J M,Klein L C. CoO 2 ,the end member of the Li x CoO 2 solid solution [J]. J. Electrochem. Soc. ,1996,143(3):1114-1123. [18] Li W,Currie C. Morphology effects on the electrochemical performance of LiNi 1- x Co x O 2 [J]. J. Electrochem. Soc. ,1997,144(8):2773-2779. [19] Lu X,Sun Y,Jian Z, et al . new insight into the atomic structure of electrochemically delithiated O 3 -Li (1- x ) CoO 2 (0≤ x ≤0.5)nanoparticles [J]. Nano Letters ,2012,12(12):6192-6197. [20] Delmas C,Braconnier J J,Hagenmuller P. A new variety of LiCoO 2 with an unusual oxygen packing obtained by exchange-reaction [J]. Mater. Res. Bull. ,1982,17(1):117-123. [21] Carlier D,Saadoune I,Croguennec L, et al . On the metastable O 2 -type LiCoO 2 [J]. Solid State Ionics ,2001,144(3-4):263-276. [22] Mendiboure A,Delmas C,Hagenmuller P. New layered structure obtained by electrochemical deintercalation of the metastable LiCoO 2 (02)variety [J]. Mater. Res. Bull. ,1984,19(10):1383-1392. [23] Carlier D,Saadoune I,Menetrier M, et al . Lithium electrochemical deintercalation from O 2 -LiCoO 2 -Structure and physical properties [J]. J. Electrochem. Soc. ,2002,149(10):A1310-A1320. [24] Carlier D,Van D V A,Delmas C, et al . First-principles investigation of phase stability in the O 2 -LiCoO 2 system [J]. Chem. Mater. ,2003,15(13):2651-2660. [25] Tarascon J M,Wang E,Shokoohi F K, et al . The spinel phase of LiMn 2 O 4 as a cathode in secondary lithium cells [J]. J. Electrochem. Soc. ,1991,138(10):2859-2864. [26] Bittihn R,Herr R,Hoge D. The swing system,a nonaqueous rechargeable carbon metal-oxide cell [J]. J. Power Sources ,1993,43(1-3):223-231. [27] Li G H,Ikuta H,Uchida T, et al . The spinel phases LiM y Mn 2- y O 4 (M=Co,Cr,Ni)as the cathode for rechargeable lithium batteries [J]. J. Electrochem. Soc. ,1996,143(1):178-182. [28] Sigala C,Guyomard D,Verbaere A, et al . Positive electrode materials with high operating voltage for lithium batteries LiCr y Mn 2- y O 4 (0≤ y ≤1)[J]. Solid State Ionics ,1995,81(3-4):167-170. [29] Amine K,Tukamoto H,Yasuda H, et al . Preparation and electrochemical investigation of LiMn 2- x Me x O 4 (Me : Ni,Fe,and x =0.5,1)cathode materials for secondary lithium batteries [J]. J. Power Sources ,1997,68(2):604-608. [30] Kawai H,Nagata M,Kageyama H, et al . 5 V lithium cathodes based on spinel solid solutions Li 2 Co 1+ x Mn 3- x O 8 :-1≤ X ≤1 [J]. Electrochim Acta ,1999,45(1-2):315-327. [31] Ein-eli Y,Howard W F,L S H, et al . LiMn 2- x Cu x O 4 spinels (0.1≤ x ≤0.5): A new class of 5 V cathode materials for Li batteries-I. Electrochemical,structural,and spectroscopic studies [J]. J. Electrochem. Soc. ,1998,145(4):1238-1244. [32] Wang Liping(王丽平). Towards a better understanding of LiNi 0.5 Mn 1.5 O 4 high voltage cathode material:Combined powder and thin film study [D]. Beijing:Institute of Physics,Chinese Academy of Sciences,2011. [33] Zhong Q M,Bonakdarpour A,Zhang M J, et al . Synthesis and electrochemistry of LiNi x Mn 2- x O 4 [J]. J. Electrochem. Soc. ,1997,144(1):205-213. [34] Kim J H,Myung S T,Yoon C S, et al . Comparative study of LiNi 0.5 Mn 1.5 O 4-delta and LiNi 0.5 Mn 1.5 O 4 cathodes having two crystallographic structures: Fd-3m and P4 3 32 [J]. Chem. Mater. ,2004,16(5):906-914. [35] Poizot P,Laruelle S,Grugeon S, et al . Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries [J]. Nature ,2000,407(6803):496-499. [36] Debart A,Dupont L,Poizot P, et al . A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium [J]. J. Electrochem. Soc. ,2001,148(11):A1266-A1274. [37] Poizot P,Laruelle S,Grugeon S, et al . Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li [J]. J. Electrochem. Soc. ,2002,149(9):A1212-A1217. [38] Larcher D,Sudant G,Leriche J B, et al . The electrochemical reduction of Co 3 O 4 in a lithium cell [J]. J. Electrochem. Soc. ,2002,149(3):A234-A241. [39] Li H,Richter G,Maier J. Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries [J]. Adv. Mater. ,2003,15(9):736-739. [40] Badway F,Pereira N,Cosandey F, et al . Carbon-metal fluoride nanocomposites Structure and electrochemistry of FeF 3 :C [J]. J. Electrochem. Soc. ,2003,150(9):A1209-A1218. [41] Balaya P,Li H,Kienle L, et al . Fully reversible homogeneous and heterogeneous Li storage in RuO 2 with high capacity [J]. Adv. Funct. Mater. ,2003,13(8):621-625. [42] Silva D C C,Crosnier O,Ouvrard G, et al . Reversible lithium uptake by FeP 2 [J]. Electrochem. Solid St. ,2003,6(8):A162-A165. [43] Li H,Balaya P,Maier J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides [J]. J. Electrochem. Soc. ,2004,151(11):A1878-A1885. [44] Fu Z W,Wang Y,Yue X L, et al . Electrochemical reactions of lithium with transition metal nitride electrodes [J]. J. Phys. Chem. B ,2004,108(7):2236-2244. [45] Fu Z W,Li C L,Liu W Y, et al . Electrochemical reaction of lithium with cobalt fluoride thin film electrode [J]. J. Electrochem. Soc. ,2005,152(2):E50-E55. [46] Yu X Q,He Y,Sun J P, et al . Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential [J]. Electrochem. Commun. ,2009,11(4):791-794. [47] Zhong K F,Xia X,Zhang B, et al . MnO powder as anode active materials for lithium ion batteries [J]. J. Power Sources ,2010,195(10):3300-3308. [48] Zhong K F,Zhang B,Luo S H, et al . Investigation on porous MnO microsphere anode for lithium ion batteries [J]. J . Power Sources ,2011,196(16):6802-6808. [49] Hu J,Li H,Huang X J. Cr 2 O 3 -based anode materials for Li-ion batteries [J]. Electrochem. Solid St .,2005,8(1):A66-A69. [50] Grugeon S,Laruelle S,Dupont L, et al . Combining electrochemistry and metallurgy for new electrode designs in Li-ion batteries [J]. Chem. Mater .,2005,17(20):5041-5047. [51] Hu J,Li H,Huang X J. Influence of micropore structure on Li-storage capacity in hard carbon spherules [J]. Solid State Ionics ,2005,176(11-12):1151-1159. [52] Dupont L,Grugeon S,Laruelle S, et al . Structure,texture and reactivity versus lithium of chromium-based oxides films as revealed by TEM investigations [J]. J. Power Sources ,2007,164(2):839-848. [53] Dupont L,Laruelle S,Grugeon S, et al . Mesoporous Cr 2 O 3 as negative electrode in lithium batteries:TEM study of the texture effect on the polymeric layer formation [J]. J. Power Sources ,2008,175(1):502-509. [54] Sun J P,Tang K,Yu X Q, et al . Overpotential and electrochemical impedance analysis on Cr 2 O 3 thin film and powder electrode in rechargeable lithium batteries [J]. Solid State Ionics ,2008,179(40):2390-2395. [55] Grugeon S,Laruelle S,Herrera U R, et al . Particle size effects on the electrochemical performance of copper oxides toward lithium [J]. J. Electrochem. Soc. ,2001,148(4):A285-A292. [56] Luo J Y,Zhang J J,Xia Y Y. Highly electrochemical reaction of lithium in the ordered mesoporosus beta-MnO 2 [J]. Chem. Mater. ,2006,18(23):5618-5623. [57] Jiao F,Harrison A,Bruce P G. Ordered three-dimensional arrays of monodispersed Mn 3 O 4 nanoparticles with a core-shell structure and spin-glass behavior [J]. Angew. Chem. Int. Edit. ,2007,46(21): 3946-3950. [58] Hu J,Li H,Huang X J, et al . Improve the electrochemical performances of Cr 2 O 3 anode for lithium ion batteries [J]. Solid State Ionics ,2006,177(26-32):2791-2799. [59] Gireaud L,Grugeon S,Pilard S, et al . Mass spectrometry investigations on electrolyte degradation products for the development of nanocomposite electrodes in lithium ion batteries [J]. Anal. Chem. ,2006,78(11):3688-3698. [60] Yu Xiqian(禹习谦). Investigations on new materials for Li-ion battery using thin film technologies [D]. Beijing:Institute of Physics,Chinese Academy of Sciences,2010. [61] Cui Z H,Guo X X,Li H. Improved electrochemical properties of MnO thin film anodes by elevated deposition temperatures:Study of conversion reactions [J]. Electrochem. Acta ,2013,89:229-238. [62] Doe R E,Persson K A,Meng Y S, et al . First-principles investigation of the Li-Fe-F phase diagram and equilibrium and nonequilibrium conversion reactions of iron fluorides with lithium [J]. Chem. Mater. ,2008,20(16):5274-5283. [63] Delmer O,Balaya P,Kienle L, et al . Enhanced potential of amorphous electrode materials:Case study of RuO 2 [J]. Adv. Mater. ,2008,20(3):501-505. [64] Delmer O,Maier J. On the chemical potential of a component in a metastable phase-application to Li-storage in the RuO 2 -Li system [J]. Phys. Chem. Chem. Phys .,2009,11(30):6424-6429. [65] Zhang Bin (张斌). Electrochemical studies of iron and manganese phosphate cathode materials for Li-ion battery [D]. Beijing :Institute of Physics,Chinese Academy of Sciences,2011. [66] Padhi A K,Nanjundaswamy K S,Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J. Electrochem. Soc. ,1997,144(4):1188-1194. [67] Andersson A S,Kalska B,Haggstrom L, et al . Lithium extraction/insertion in LiFePO 4 :An X-ray diffraction and Mossbauer spectroscopy study [J]. Solid State Ionics ,2000,130(1-2):41-52. [68] Andersson A S,Thomas J O. The source of first-cycle capacity loss in LiFePO 4 [J]. J. Power Sources ,2001,97(8):498-502. [69] Liu Lijun(刘立君). Studies on cathode materials for lithium ion batteries [D]. Beijing:Institute of Physics,Chinese Academy of Sciences,2003. [70] Srinivasan V,Newman J. Discharge model for the lithium iron-phosphate electrode [J]. J. Electrochem. Soc. ,2004,151(10):A1517-A1529. [71] Chen G Y,Song X Y,Richardson T J. Electron microscopy study of the LiFePO 4 to FePO 4 phase transition [J]. Electrochem. Solid St. ,2006,9(6):A295-A298. [72] Laffont L,Delacourt C,Gibot P, et al . Study of the LiFePO 4 /FePO 4 two-phase system by high-resolution electron energy loss spectroscopy [J]. Chem. Mater. ,2006,18(23):5520-5529. [73] Delmas C,Maccario M,Croguennec L, et al . Lithium deintercalation in LiFePO 4 nanoparticles via a domino-cascade model [J]. Nat. Mater. ,2008,7(8):665-671. [74] Gu L,Zhu C,Li H, et al . Direct observation of lithium staging in partially delithiated LiFePO 4 at atomic resolution [J]. Journal of the American Chemical Society ,2011,133(13):4661-4663. [75] Suo L M,Han W Z,Lu X, et al . Highly ordered staging structural interface between LiFePO 4 and FePO 4 [J]. Phys. Chem. Chem. Phys. ,2012,14(16):5363-5367. [76] Malik R,Zhou F,Ceder G. Kinetics of non-equilibrium lithium incorporation in LiFePO 4 [J]. Nat. Mater. ,2011,10(8):587-590. [77] Morgan D,Van D V A,Ceder G. Li conductivity in Li x MPO 4 (M = Mn,Fe,Co,Ni)olivine materials [J]. Electrochem. Solid St. ,2004,7(2):A30-A32. [78] Chung S Y,Bloking J T,Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nat. Mater. ,2002,1(2):123-128. [79] Kang B,Ceder G. Battery materials for ultrafast charging and discharging [J]. Nature ,2009,458(7235):190-193. [80] Kim D H,Kim J. Synthesis of LiFePO 4 nanoparticles in polyol medium and their electrochemical properties [J]. Electrochem. Solid St. ,2006,9(9):A439-A442. [81] Delacourt C,Poizot P,Tarascon J M, et al . The existence of a temperature-driven solid solution in Li x FePO 4 for 0≤ x ≤1 [J]. Nat. Mater. ,2005,4(3):254-260. [82] Delacourt C,Rodriguez C J,Schmitt B, et al . Crystal chemistry of the olivine-type Li x FePO 4 system(0≤x≤1)25~370 ℃ [J]. Solid State Sci. ,2005,7(12):1506-1516. [83] Chen G Y,Song X Y,Richardson T J. Metastable solid-solution phases in the Li x FePO 4 /FePO 4 system [J]. J. Electrochem . Soc .,2007,154(7):A627-A632. [84] Dodd J L,Yazami R,Fultz B. Phase diagram of Li( x )FePO 4 [J]. Electrochem. Solid St., 2006,9(3):A151-A155. [85] Sun Y,Lu X,Xiao R J, et al. Kinetically controlled lithium-staging in delithiated LiFePO 4 driven by the Fe center mediated interlayer Li-Li interactions [J]. Chem. Mater .,2012,24(24):4693-4703. [86] Wang L,Maxisch T,Ceder G. A first-principles approach to studying the thermal stability of oxide cathode materials [J]. Chem. Mater. ,2007,19(3):543-552. [87] Bak S M,Nam K W,Chang W, et al . Correlating structural changes and gas evolution during the thermal decomposition of charged Li x Ni 0.8 Co 0.15 Al 0.05 O 2 cathode materials [J]. Chem. Mater. ,2013,25(3):337-351. [88] Chen Z H,Ren Y,Jansen A N, et al . New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries [J]. Nat. Commun .,2013,4:1513. [89] Benedek R,Thackeray M M,Van D WA. Free energy for protonation reaction in lithium-ion battery cathode materials [J]. Chem. Mater.,2008,20(17):5485-5490. [90] Lu Xueshan(陆学善). Phase Diagram and Phase Transition(相图与相变)[M]. Hefei:Press of University of Science and Technology of China,1990:376-579. [91] Saunders N M A P. CALPHAD(calculation of phase diagrams):A comprehensive guide [M]. Oxford: Oxford,1998. [92] Aydinol M K,Kohan A F,Ceder G. Ab initio calculation of the intercalation voltage of lithium transition metal oxide electrodes for rechargeable batteries [J]. J. Power Sources ,1997,68(2):664-668. [93] Van D V A,Ceder G. Lithium diffusion in layered Li x CoO 2 [J]. Electrochem. Solid St .,2000,3(7):301-304. [94] Meng Y S,Van D V A,Chan M K Y, et al . Ab initio study of sodium ordering in Na 0.75 CoO 2 and its relation to Co 3+ /Co 4+ charge ordering [J]. Phys. Rev. B ,2005,72(17):172103. [95] Maxisch T,Zhou F,Ceder G. Ab initio study of the migration of small polarons in olivine Li x FePO 4 and their association with lithium ions and vacancies [J]. Phys. Rev. B ,2006,73(10):104301. [96] Ong S P,Chevrier V L,Hautier G, et al . Voltage,stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials [J]. Energy & Environmental Science ,2011,4(9):3680. [97] Hautier G,Jain A,Chen H, et al . Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations [J]. J. Mater. Chem .,2011,21(43):17147-17153. [98] Jain A,Hautier G,Moore C, et al . A computational investigation of Li 9 M 3 (P 2 O 7 ) 3 (PO 4 ) 2 (M= V,Mo)as cathodes for Li-ion batteries [J]. J. Electrochem . Soc .,2012,159(5):A622-A633. [99] Chen H,Hautier G,Jain A, et al . Carbonophosphates:A new family of cathode materials for Li-ion batteries identified computationally [J]. Chem. Mater .,2012,24(11):2009-2016. [100] Ping O S,Wang L,Kang B,et al. Li-Fe-P-O 2 phase diagram from first principles calculations [J]. Chem. Mater. ,2008,20(5):1798-1807. [101] Ong S P,Jain A,Hautier G, et al . Thermal stabilities of delithiated olivine MPO 4 (M= Fe,Mn)cathodes investigated using first principles calculations[J]. Electrochem. Commun. ,2010,12(3):427-30. [102] Doe R E,Persson K A,Meng Y S, et al . First-principles investigation of the Li-Fe-F phase diagram and equilibrium and nonequilibrium conversion reactions of iron fluorides with lithium[J]. Chem. Mater. ,2008,20(16):5274-5283. [103] Hautier G,Fischer C C,Jain A, et al. Finding nature's missing ternary oxide compounds using machine learning and density functional theory [J]. Chem. Mater .,2010,22(12):3762-3767. [104] Hautier G,Fischer C,Ehrlacher V, et al. Data mined ionic substitutions for the discovery of new compounds [J]. Inorganic Chemistry ,2011,50(2):656. [105] Fleischauer M D,Hatchard T D,Rockwell G P, et al. Design and testing of a 64-channel combinatorial electrochemical cell [J]. J. Electrochem . Soc .,2003,150(11):A1465-A1469. [106] Roberts M R,Vitins G,Denuault G, et al . High throughput electrochemical observation of structural phase changes in LiFe 1- x Mn x PO 4 during charge and discharge [J]. J. Electrochem . Soc .,2010,157(4):A381-A386. |
[1] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[2] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[3] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[4] | Jinping LIU, Bowei PU, Zheyi ZOU, Mingqing LI, Yuqing DING, Yuan REN, Yaqiao LUO, Jie LI, Yajie LI, Da WANG, Bing HE, Siqi SHI. Investigating thermodynamic and kinetic properties of ionic conductors via Monte Carlo simulation [J]. Energy Storage Science and Technology, 2022, 11(3): 878-896. |
[5] | Cong HE, Yuanwei LU, Wenbing SONG, Xiaotong CHEN, Yuting WU, Zhansheng FAN. The phase diagram prediction and experimental study of ternary same cation systems [J]. Energy Storage Science and Technology, 2021, 10(5): 1729-1734. |
[6] | Chengzhi KE, Bensheng XIAO, Miao LI, Jingyu LU, Yang HE, Li ZHANG, Qiaobao ZHANG. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy [J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. |
[7] | Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE. Preparation and characterization of solvent-free dry electrodes for lithium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1311-1316. |
[8] | Yilong LIN, Min XIAO, Dongmei HAN, Shuanjin WANG, Yuezhong MENG. Research progress in formation technique for LIBs [J]. Energy Storage Science and Technology, 2021, 10(1): 50-58. |
[9] | Taihua WANG, Shujie ZHANG, Jin'gan CHEN. Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm [J]. Energy Storage Science and Technology, 2020, 9(6): 1940-1947. |
[10] | Xintong LI, Linchen ZHANG, Huanrui ZHANG, Botao ZHANG, Guanglei CUI. Research progress of liquid-crystalline electrolytes in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1595-1605. |
[11] | Huanqing LIU, Xu GAO, Jun CHEN, Shouyi YIN, Kangyu ZOU, Laiqiang XU, Guoqiang ZOU, Hongshuai HOU, Xiaobo JI. Layered oxide cathode for sodium ion batteries: Interlayer glide, phase transition and performance [J]. Energy Storage Science and Technology, 2020, 9(5): 1327-1339. |
[12] | Xingang MA, Yuwei ZANG, Lianke XIE, Jianguang YIN, Guoying ZHANG, Rongchun MA, Xianzheng YUAN. Engineering pseudocapacitive lithium storage based on ultra-fine SnS2-carbon3D microstructure [J]. Energy Storage Science and Technology, 2020, 9(5): 1467-1471. |
[13] | Xuejiao NIE, Jinzhi GUO, Meiyi WANG, Zhenyi GU, Xinxin ZHAO, Xu YANG, Haojie LIANG, Xinglong WU. Using spent lithium manganate to prepare Li0.25Na0.6MnO2 as cathode material in sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1402-1409. |
[14] | MA Tengfei, MA Chao, SUN Rui, JI Hongmei, YANG Gang. Freeze-drying assisted synthesis of mno/reduced graphene composite and the improved rate cyclic performance for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1044-1051. |
[15] | WANG Taihua, ZHANG Shujie, CHEN Jingan. Low temperature charging aging modeling and optimization of charging strategy for lithium batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1137-1146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||