Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (3): 760-780.doi: 10.19799/j.cnki.2095-4239.2021.0703
Previous Articles Next Articles
					
													Suting WENG1,2( ), Zepeng LIU1,2, Gaojing YANG1,2, Simeng ZHANG1,3, Xiao ZHANG1,3, Qiu FANG1,3, Yejing LI1,2, Zhaoxiang WANG1,2,3, Xuefeng WANG1,2,3,4(
), Zepeng LIU1,2, Gaojing YANG1,2, Simeng ZHANG1,3, Xiao ZHANG1,3, Qiu FANG1,3, Yejing LI1,2, Zhaoxiang WANG1,2,3, Xuefeng WANG1,2,3,4( ), Liquan CHEN1
), Liquan CHEN1
												  
						
						
						
					
				
Received:2021-12-24
															
							
																	Revised:2022-01-05
															
							
															
							
																	Online:2022-03-05
															
							
																	Published:2022-03-11
															
						Contact:
								Xuefeng WANG   
																	E-mail:wengsuting@iphy.ac.cn;wxf@iphy.ac.cn
																					CLC Number:
Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries[J]. Energy Storage Science and Technology, 2022, 11(3): 760-780.
| 1 | ZHANG H, LI C M, ESHETU G G, et al. From solid-solution electrodes and the rocking-chair concept to today's batteries[J]. Angewandte Chemie International Edition, 2020, 59(2): 534-538. | 
| 2 | GREY C P, HALL D S. Prospects for lithium-ion batteries and beyond—A 2030 vision[J]. Nature Communications, 2020, 11(1): 6279. | 
| 3 | FENG K, LI M, LIU W W, et al. Silicon-based anodes for lithium-ion batteries: From fundamentals to practical applications[J]. Small, 2018, 14(8): doi: 10.1002/smll.201702737. | 
| 4 | HORSTMANN B, SHI J Y, AMINE R, et al. Strategies towards enabling lithium metal in batteries: Interphases and electrodes[J]. Energy & Environmental Science, 2021, 14(10): 5289-5314. | 
| 5 | CHEN Y, WANG T Y, TIAN H J, et al. Advances in lithium-sulfur batteries: From academic research to commercial viability[J]. Advanced Materials, 2021, 33(29): doi: 10.1002/adma.202003666. | 
| 6 | LIU T, VIVEK J P, ZHAO E W, et al. Current challenges and routes forward for nonaqueous lithium-air batteries[J]. Chemical Reviews, 2020, 120(14): 6558-6625. | 
| 7 | WANG H C, ZHU J P, SU Y, et al. Interfacial compatibility issues in rechargeable solid-state lithium metal batteries: A review[J]. Science China Chemistry, 2021, 64(6): 879-898. | 
| 8 | WANG X F, ZHANG M H, ALVARADO J, et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM[J]. Nano Letters, 2017, 17(12): 7606-7612. | 
| 9 | LI Y Z, LI Y B, PEI A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358(6362): 506-510. | 
| 10 | EGERTON R F. Radiation damage to organic and inorganic specimens in the TEM[J]. Micron, 2019, 119: 72-87. | 
| 11 | ZACHMAN M J, TU Z Y, CHOUDHURY S, et al. Cryo-STEM mapping of solid-liquid interfaces and dendrites in lithium-metal batteries[J]. Nature, 2018, 560(7718): 345-349. | 
| 12 | LEE J Z, WYNN T A, SCHROEDER M A, et al. Cryogenic focused ion beam characterization of lithium metal anodes[J]. ACS Energy Letters, 2019, 4(2): 489-493. | 
| 13 | WANG X F, LI Y J, MENG Y S. Cryogenic electron microscopy for characterizing and diagnosing batteries[J]. Joule, 2018, 2(11): 2225-2234. | 
| 14 | LIU Y J, JU Z J, ZHANG B L, et al. Visualizing the sensitive lithium with atomic precision: Cryogenic electron microscopy for batteries[J]. Accounts of Chemical Research, 2021, 54(9): 2088-2099. | 
| 15 | 罗强. 聚焦离子束加工中的缺陷及成因[J]. 电子显微学报, 2016, 35(1): 58-62. | 
| LUO Q. Drawbacks in the focused ion beam processing and the causes[J]. Journal of Chinese Electron Microscopy Society, 2016, 35(1): 58-62. | |
| 16 | WENG S T, LI Y J, WANG X F. Cryo-EM for battery materials and interfaces: Workflow, achievements, and perspectives[J]. iScience, 2021, 24(12): doi: 10.1016/j.isci.2021.103402. | 
| 17 | JU Z J, YUAN H D, SHENG O W, et al. Cryo-electron microscopy for unveiling the sensitive battery materials[J]. Small Science, 2021, 1(11): doi: 10.1002/smsc.202100055. | 
| 18 | REN X C, ZHANG X Q, XU R, et al. Analyzing energy materials by cryogenic electron microscopy[J]. Advanced Materials, 2020, 32(24): doi: 10.1002/adma.201908293. | 
| 19 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. | 
| 20 | LI J W, KONG Z, LIU X X, et al. Strategies to anode protection in lithium metal battery: A review[J]. InfoMat, 2021, 3(12): 1333-1363. | 
| 21 | WANG X F, PAWAR G, LI Y J, et al. Glassy Li metal anode for high-performance rechargeable Li batteries[J]. Nature Materials, 2020, 19(12): 1339-1345. | 
| 22 | HUANG S Z, YANG J F, MA L X, et al. Effectively regulating more robust amorphous Li clusters for ultrastable dendrite-free cycling[J]. Advanced Science, 2021, 8(19): doi: 10.1002/advs.202101584. | 
| 23 | WU J X, IHSAN-UL-HAQ M, CHEN Y M, et al. Understanding solid electrolyte interphases: Advanced characterization techniques and theoretical simulations[J]. Nano Energy, 2021, 89: doi: 10.1016/j.nanoen.2021.106489. | 
| 24 | ZHANG S M, YANG G J, LIU S, et al. Understanding the dropping of lithium plating potential in carbonate electrolyte[J]. Nano Energy, 2020, 70: doi: 10.1016/j.nanoen.2020.104486. | 
| 25 | PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model[J]. Journal of the Electrochemical Society, 1979, 126(12): 2047-2051. | 
| 26 | YUAN S Y, WENG S T, WANG F, et al. Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition[J]. Nano Energy, 2021, 83: doi: 10.1016/j.nanoen.2021.105847. | 
| 27 | YANG G J, LI Y J, LIU S, et al. LiFSI to improve lithium deposition in carbonate electrolyte[J]. Energy Storage Materials, 2019, 23: 350-357. | 
| 28 | ZHANG S M, YANG G J, LIU Z P, et al. Competitive solvation enhanced stability of lithium metal anode in dual-salt electrolyte[J]. Nano Letters, 2021, 21(7): 3310-3317. | 
| 29 | PELED E, GOLODNITSKY D, ARDEL G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of the Electrochemical Society, 1997, 144(8): L208-L210. | 
| 30 | AURBACH D, EIN-ELY Y, ZABAN A. The surface chemistry of lithium electrodes in alkyl carbonate solutions[J]. Journal of the Electrochemical Society, 1994, 141(1): L1-L3. | 
| 31 | LI N W, YIN Y X, YANG C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes[J]. Advanced Materials, 2016, 28(9): 1853-1858. | 
| 32 | YU Z A, CUI Y, BAO Z N. Design principles of artificial solid electrolyte interphases for lithium-metal anodes[J]. Cell Reports Physical Science, 2020, 1(7): doi: 10.1016/j.xcrp.2020.100119. | 
| 33 | ZHANG K, WU F, ZHANG K, et al. Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode[J]. Energy Storage Materials, 2021, 41: 485-494. | 
| 34 | MOGENSEN M B, HENNESØ E. Properties and structure of the LiCl-films on lithium anodes in liquid cathodes[J]. Acta Chimica Slovenica, 2016, 63(3): 519-534. | 
| 35 | FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4(10): 882-890. | 
| 36 | SU C C, HE M N, CAI M, et al. Solvation-protection-enabled high-voltage electrolyte for lithium metal batteries[J]. Nano Energy, 2022, 92: doi: 10.1016/j.nanoen.2021.106720. | 
| 37 | ZHANG X Q, CHENG X B, CHEN X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017, 27(10): doi: 10.1002/adfm.201605989. | 
| 38 | MARKEVICH E, SALITRA G, AURBACH D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries[J]. ACS Energy Letters, 2017, 2(6): 1337-1345. | 
| 39 | HUANG W, WANG H S, BOYLE D T, et al. Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy[J]. ACS Energy Letters, 2020, 5(4): 1128-1135. | 
| 40 | HE Y, JIANG L, CHEN T W, et al. Progressive growth of the solid-electrolyte interphase towards the Si anode interior causes capacity fading[J]. Nature Nanotechnology, 2021, 16(10): 1113-1120. | 
| 41 | HAN B, ZOU Y C, XU G Y, et al. Additive stabilization of SEI on graphite observed using cryo-electron microscopy[J]. Energy & Environmental Science, 2021, 14(9): 4882-4889. | 
| 42 | HUANG W, ATTIA P M, WANG H S, et al. Evolution of the solid-electrolyte interphase on carbonaceous anodes visualized by atomic-resolution cryogenic electron microscopy[J]. Nano Letters, 2019, 19(8): 5140-5148. | 
| 43 | ZHANG X, WENG S T, YANG G J, et al. Interplay between solid-electrolyte interphase and (in)active LixSi in silicon anode[J]. Cell Reports Physical Science, 2021, 2(12): doi: 10.1016/j.xcrp. 2021.100668. | 
| 44 | 刘洋洋, 王旭阳, 徐谢宇, 等. 锂金属负极用集流体改性研究及进展[J]. 储能科学与技术, 2021, 10(4): 1261-1272. | 
| LIU Y Y, WANG X Y, XU X Y, et al. Research progresses on modified current collector for lithium metal anode[J]. Energy Storage Science and Technology, 2021, 10(4): 1261-1272. | |
| 45 | RUPP R, CAERTS B, VANTOMME A, et al. Lithium diffusion in copper[J]. The Journal of Physical Chemistry Letters, 2019, 10(17): 5206-5210. | 
| 46 | LI Y, LIU M Q, FENG X, et al. How can the electrode influence the formation of the solid electrolyte interface?[J]. ACS Energy Letters, 2021, 6(9): 3307-3320. | 
| 47 | ZHANG S M, YANG G J, LIU Z P, et al. Phase diagram determined lithium plating/stripping behaviors on lithiophilic substrates[J]. ACS Energy Letters, 2021, 6(11): 4118-4126. | 
| 48 | CUI J, YAO S S, IHSAN-UL-HAQ M, et al. Correlation between Li plating behavior and surface characteristics of carbon matrix toward stable Li metal anodes[J]. Advanced Energy Materials, 2019, 9(1): doi: 10.1002/aenm.201802777. | 
| 49 | YANG G J, LIU Z P, WENG S T, et al. Iron carbide allured lithium metal storage in carbon nanotube cavities[J]. Energy Storage Materials, 2021, 36: 459-465. | 
| 50 | YANG G J, ZHANG S M, TONG Y X, et al. Minimizing carbon particle size to improve lithium deposition on natural graphite[J]. Carbon, 2019, 155: 9-15. | 
| 51 | YANG G J, LI Y J, TONG Y X, et al. Lithium plating and stripping on carbon nanotube sponge[J]. Nano Letters, 2019, 19(1): 494-499. | 
| 52 | YANG G J, ZHANG S M, WENG S T, et al. Anionic effect on enhancing the stability of a solid electrolyte interphase film for lithium deposition on graphite[J]. Nano Letters, 2021, 21(12): 5316-5323. | 
| 53 | XU T H, GAO P, LI P R, et al. Fast-charging and ultrahigh-capacity lithium metal anode enabled by surface alloying[J]. Advanced Energy Materials, 2020, 10(8): doi: 10.1002/aenm.201902343. | 
| 54 | KIM M S, DEEPIKA, LEE S H, et al. Enabling reversible redox reactions in electrochemical cells using protected LiAl intermetallics as lithium metal anodes[J]. Science Advances, 2019, 5(10): doi: 10.1126/sciadv.aax5587. | 
| 55 | FAN H M, CHEN B, LI S, et al. Nanocrystalline Li-Al-Mn-Si foil as reversible Li host: Electronic percolation and electrochemical cycling stability[J]. Nano Letters, 2020, 20(2): 896-904. | 
| 56 | LI X Y, YANG G J, ZHANG S M, et al. Improved lithium deposition on silver plated carbon fiber paper[J]. Nano Energy, 2019, 66: doi: 10.1016/j.nanoen.2019.104144. | 
| 57 | 张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展[J]. 物理学报, 2020, 69(22): 159-186. | 
| ZHANG Q B, GONG Z L, YANG Y. Advance in interface and characterizations of sulfide solid electrolyte materials[J]. Acta Physica Sinica, 2020, 69(22): 159-186. | |
| 58 | 陆敬予, 柯承志, 龚正良, 等. 原位表征技术在全固态锂电池中的应用[J]. 物理学报, 2021, 70(19): 236-262. | 
| LU J Y, KE C Z, GONG Z L, et al. Application of in situ characterization techniques in all-solid-state lithium batteries[J]. Acta Physica Sinica, 2021, 70(19): 236-262. | |
| 59 | LI Y J, WANG X F, ZHOU H Y, et al. Thin solid electrolyte layers enabled by nanoscopic polymer binding[J]. ACS Energy Letters, 2020, 5(3): 955-961. | 
| 60 | CHENG D Y, WYNN T A, WANG X F, et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and LiPON via cryogenic electron microscopy[J]. Joule, 2020, 4(11): 2484-2500. | 
| 61 | ZHANG L L, CHEN X, WAN F, et al. Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries[J]. ACS Nano, 2018, 12(9): 9578-9586. | 
| 62 | 孙春水, 郭德才, 陈剑. 碳化木耳多孔碳的制备及在硫正极中的应用[J]. 储能科学与技术, 2021, 10(6): 2060-2068. | 
| SUN C S, GUO D C, CHEN J. Preparation and research of carbonized agaric material for sulfur cathodes[J]. Energy Storage Science and Technology, 2021, 10(6): 2060-2068. | |
| 63 | XING X, LI Y J, WANG X F, et al. Cathode electrolyte interface enabling stable Li-S batteries[J]. Energy Storage Materials, 2019, 21: 474-480. | 
| 64 | 翁素婷, 张庆华, 谷林. 原位电子显微学方法在材料研究中的应用[J]. 电子显微学报, 2019, 38(5): 556-568. | 
| WENG S T, ZHANG Q H, GU L. Application of in situ electron microscopy in materials research[J]. Journal of Chinese Electron Microscopy Society, 2019, 38(5): 556-568. | |
| 65 | 柯承志, 肖本胜, 李苗, 等. 电极材料储锂行为及其机制的原位透射电镜研究进展[J]. 储能科学与技术, 2021, 10(4): 1219-1236. | 
| KE C Z, XIAO B S, LI M, et al. Research progress in understanding of lithium storage behavior and reaction mechanism of electrode materials through in situ transmission electron microscopy[J]. Energy Storage Science and Technology, 2021, 10(4): 1219-1236. | 
| [1] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. | 
| [2] | Jianwen FENG, Shiguang HU, Bing HAN, Yinglin XIAO, Yonghong DENG, Chaoyang WANG. Research progress of electrolyte optimization for lithium metal batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1629-1640. | 
| [3] | WANG Chenglin, QU Shiji, LI Jingze. Protective mechanism of the Li alloy film-buffered Li metal anode [J]. Energy Storage Science and Technology, 2020, 9(2): 368-374. | 
| [4] | DUAN Hui1,2, YIN Yaxia1,2, GUO Yuguo1,2, WAN Lijun1,2. Research progress on solid-state lithium metal batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 941-951. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
