Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (3): 852-865.doi: 10.19799/j.cnki.2095-4239.2022.0047
Previous Articles Next Articles
Luyu GAN1,2(), Rusong CHEN1,2, Hongyi PAN1,2, Siyuan WU1,2, Xiqian YU1,2(), Hong LI1,2
Received:
2022-01-21
Revised:
2022-02-05
Online:
2022-03-05
Published:
2022-03-11
Contact:
Xiqian YU
E-mail:ganluyu@qq.com;xyu@iphy.ac.cn
CLC Number:
Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods[J]. Energy Storage Science and Technology, 2022, 11(3): 852-865.
1 | MURPHY D, BROADHEAD J, STEELE B. Materials for advanced batteries[M]. New York: Plenum Press, 1980. |
2 | NISHI Y. The development of lithium ion secondary batteries[J]. Chemical Record, 2001, 1(5): 406-413. |
3 | 吴娇杨, 刘品, 胡勇胜, 等. 锂离子电池和金属锂离子电池的能量密度计算[J]. 储能科学与技术, 2016, 5(4): 443-453. |
WU J Y, LIU P, HU Y S, et al. Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(4): 443-453. | |
4 | FOUCHARD D, TAYLOR J B. The molicel® rechargeable lithium system: Multicell aspects[J]. Journal of Power Sources, 1987, 21(3/4): 195-205. |
5 | 百度百科.三星电池门[EB/OL]. [2021-12-14].https://baike.baidu.com/item/%E4%B8%89%E6%98%9F%E7%94%B5%E6%B1%A0%E9%97%A8/19964149. |
6 | 电动观察.2021电动汽车安全年度报告[EB/OL]. [2022-01-06]. https://baijiahao.baidu.com/s?id=1721164341983283279&wfr=spider&for=pc. |
7 | 国际能源网.韩国1500 kW·h储能电站燃起大火!距上次火灾仅5天![EB/OL]. [2019-05-23]. https://www.in-en.com/article/html/energy-2312129.shtml. |
8 | 百度百科.4·16北京储能电站火灾事故[EB/OL]. [2022-01-11].https://baike.baidu.com/item/4%C2%B716%E5%8C%97%E4%BA%AC%E5%82%A8%E8%83%BD%E7%94%B5%E7%AB%99%E7%81%AB%E7%81%BE%E4%BA%8B%E6%95%85/56773365?fr=aladdin#2. |
9 | WEN J W, YU Y, CHEN C H. A review on lithium-ion batteries safety issues: Existing problems and possible solutions[J]. Materials Express, 2012, 2(3): 197-212. |
10 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
11 | MALEKI H, HOWARD J N. Internal short circuit in Li-ion cells[J]. Journal of Power Sources, 2009, 191(2): 568-574. |
12 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 热分析术语: GB/T 6425—2008[S]. 北京: 中国标准出版社, 2008. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Nomenclature for thermal analysis: GB/T 6425—2008[S]. Beijing: Standards Press of China, 2008. | |
13 | MALEKI H, DENG G P, ANANI A, et al. Thermal stability studies of Li-ion cells and components[J]. Journal of the Electrochemical Society, 1999, 146(9): 3224-3229. |
14 | LI Y L, GAO X L, FENG X N, et al. Battery eruption triggered by plated lithium on an anode during thermal runaway after fast charging[J]. Energy, 2022, 239: doi: 10.1016/j.energy.2021.122097. |
15 | YAMADA A, CHUNG S C, HINOKUMA K. Optimized LiFePO4 for lithium battery cathodes[J]. Journal of the Electrochemical Society, 2001, 148(3): A224-A229. |
16 | ZHANG Z, FOUCHARD D, REA J R. Differential scanning calorimetry material studies: Implications for the safety of lithium-ion cells[J]. Journal of Power Sources, 1998, 70(1): 16-20. |
17 | NOH H J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 233: 121-130. |
18 | SUN Y K, MYUNG S T, PARK B C, et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials, 2009, 8(4): 320-324. |
19 | WANG Y, ZHANG Q H, XUE Z C, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances[J]. Advanced Energy Materials, 2020, 10(28): doi: 10.1002/aenm.202001413. |
20 | LI Y, LIU X, REN D S, et al. Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety[J]. Nano Energy, 2020, 71: doi: 10.1016/j.nanoen.2020.104643. |
21 | RICHARD M N, DAHN J R. Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte[J]. Journal of Power Sources, 1999, 79(2): 135-142. |
22 | MACNEIL D D, LARCHER D, DAHN J R. Comparison of the reactivity of various carbon electrode materials with electrolyte at elevated temperature[J]. Journal of the Electrochemical Society, 1999, 146(10): 3596-3602. |
23 | MACNEIL D D, CHRISTENSEN L, LANDUCCI J, et al. An autocatalytic mechanism for the reaction of LixCoO2 in electrolyte at elevated temperature[J]. Journal of the Electrochemical Society, 2000, 147(3): doi: 10.1149/1.1393299. |
24 | MACNEIL D D, DAHN J R. Can an electrolyte for lithium-ion batteries be too stable? [J]. Journal of the Electrochemical Society, 2003, 150(1): doi: 10.1149/1.1521756. |
25 | JIANG J, DAHN J R. ARC studies of the thermal stability of three different cathode materials: LiCoO2, Li[Ni0.1Co0.8Mn0.1]O2 and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes[J]. Electrochemistry Communications, 2004, 6(1): 39-43. |
26 | MA L, NIE M Y, XIA J, et al. A systematic study on the reactivity of different grades of charged Li[NixMnyCoz]O2 with electrolyte at elevated temperatures using accelerating rate calorimetry[J]. Journal of Power Sources, 2016, 327: 145-150. |
27 | HUANG Q, MA L, LIU A, et al. The reactivity of charged positive Li1- n[NixMnyCoz]O2 electrodes with electrolyte at elevated temperatures using accelerating rate calorimetry[J]. Journal of Power Sources, 2018, 390: 78-86. |
28 | CORMIER M M E, ZHANG N, LIU A, et al. Impact of dopants (Al, Mg, Mn, Co) on the reactivity of LixNiO2 with the electrolyte of Li-ion batteries[J]. Journal of the Electrochemical Society, 2019, 166(13): A2826-A2833. |
29 | ZHANG N, STARK J, LI H Y, et al. Effects of fluorine doping on nickel-rich positive electrode materials for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(8): doi: 10. 1149/1945-7111/ab8b00. |
30 | WANG Q S, SUN J H, YAO X L, et al. Thermal stability of LiPF6/EC+DEC electrolyte with charged electrodes for lithium ion batteries[J]. Thermochimica Acta, 2005, 437(1/2): 12-16. |
31 | NAM K W, YOON W S, YANG X Q. Structural changes and thermal stability of charged LiNi1/3Co1/3Mn1/3O2 cathode material for Li-ion batteries studied by time-resolved XRD[J]. Journal of Power Sources, 2009, 189(1): 515-518. |
32 | YOON W S, NAM K W, JANG D, et al. Structural study of the coating effect on the thermal stability of charged MgO-coated LiNi0.8Co0.2O2 cathodes investigated by in situ XRD[J]. Journal of Power Sources, 2012, 217: 128-134. |
33 | BAK S M, HU E Y, ZHOU Y N, et al. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22594-22601. |
34 | LIN F, LIU Y J, YU X Q, et al. Synchrotron X-ray analytical techniques for studying materials electrochemistry in rechargeable batteries[J]. Chemical Reviews, 2017, 117(21): 13123-13186. |
35 | LI J Y, HUA H M, KONG X B, et al. In-situ probing the near-surface structural thermal stability of high-nickel layered cathode materials[J]. Energy Storage Materials, 2022, 46: 90-99. |
36 | VAN DER VEN A, AYDINOL M K, CEDER G. First-principles evidence for stage ordering in LixCoO2[J]. Journal of the Electrochemical Society, 1998, 145(6): 2149-2155. |
37 | RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chemistry of Materials, 2016, 28(1): 266-273. |
38 | XIAO Y H, MIARA L J, WANG Y, et al. Computational screening of cathode coatings for solid-state batteries[J]. Joule, 2019, 3(5): 1252-1275. |
39 | CHENG T, MERINOV B V, MOROZOV S, et al. Quantum mechanics reactive dynamics study of solid Li-electrode/Li6PS5Cl-electrolyte interface[J]. ACS Energy Letters, 2017, 2(6): 1454-1459. |
40 | ZHOU G, SUN X R, LI Q H, et al. Mn ion dissolution mechanism for lithium-ion battery with LiMn2O4 cathode: in situ ultraviolet-visible spectroscopy and ab initio molecular dynamics simulations[J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 3051-3057. |
41 | 国家市场监督管理总局, 国家标准化管理委员会. 电动汽车用动力蓄电池安全要求: GB 38031—2020[S]. 北京: 中国标准出版社, 2020. |
42 | SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100. |
43 | FENG X N, FANG M, HE X M, et al. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301. |
44 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. |
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016. | |
45 | ZHANG Z J, RAMADASS P, FANG W F. Safety of lithium-ion batteries[M]. Amsterdam: Elsevier, 2014: 409-435. |
46 | ZHAO R, LIU J, GU J J. A comprehensive study on Li-ion battery nail penetrations and the possible solutions[J]. Energy, 2017, 123: 392-401. |
47 | FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. |
48 | LIU X, REN D S, HSU H, et al. Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2(10): 2047-2064. |
49 | LI Y L, FENG X N, REN D S, et al. Thermal runaway triggered by plated lithium on the anode after fast charging[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46839-46850. |
50 | FINEGAN D P, TJADEN B, HEENAN T M M, et al. Tracking internal temperature and structural dynamics during nail penetration of lithium-ion cells[J]. Journal of the Electrochemical Society, 2017, 164(13): A3285-A3291. |
51 | YOKOSHIMA T, MUKOYAMA D, MAEDA F, et al. Direct observation of internal state of thermal runaway in lithium ion battery during nail-penetration test[J]. Journal of Power Sources, 2018, 393: 67-74. |
52 | FINEGAN D P, SCHEEL M, ROBINSON J B, et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms7924. |
53 | 胡荣祖, 高胜利, 赵凤起. 热分析动力学[M]. 2版. 北京: 科学出版社, 2008. |
HU R Z, GAO S L, ZHAO F Q. Thermal analysis kinetics[M]. 2nd Editon, Beijing: Science Press, 2008. | |
54 | HATCHARD T D, MACNEIL D D, BASU A, et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of the Electrochemical Society, 2001, 148(7): A755. |
55 | FENG X N, HE X M, OUYANG M G, et al. Thermal runaway propagation model for designing a safer battery pack with 25 A·h LiNixCoyMnzO2 large format lithium ion battery[J]. Applied Energy, 2015, 154: 74-91. |
56 | REN D S, LIU X, FENG X N, et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228: 633-644. |
57 | KIM G H, PESARAN A, SPOTNITZ R. A three-dimensional thermal abuse model for lithium-ion cells[J]. Journal of Power Sources, 2007, 170(2): 476-489. |
58 | GUO M, KIM G H, WHITE R E. A three-dimensional multi-physics model for a Li-ion battery[J]. Journal of Power Sources, 2013, 240: 80-94. |
59 | FENG X, HE X, LU L, et al. Analysis on the fault features for internal short circuit detection using an electrochemical-thermal coupled model[J]. Journal of the Electrochemical Society, 2018, 165(2): A155-A167. |
60 | YANG X G, WANG C Y. Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries[J]. Journal of Power Sources, 2018, 402: 489-498. |
61 | LI H, DUAN Q L, ZHAO C P, et al. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Journal of Hazardous Materials, 2019, 375: 241-254. |
62 | FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273. |
63 | 黄沛丰. 锂离子电池火灾危险性及热失控临界条件研究[D]. 合肥: 中国科学技术大学, 2018. |
HUANG P F. Research on the fire risk of lithium ion battery and the critical condition of thermal runaway behavior[D]. Hefei: University of Science and Technology of China, 2018. | |
64 | DOUGHTY D H, ROTH E P, CRAFTS C C, et al. Effects of additives on thermal stability of Li ion cells[J]. Journal of Power Sources, 2005, 146(1/2): 116-120. |
65 | SAID A O, LEE C, STOLIAROV S I, et al. Comprehensive analysis of dynamics and hazards associated with cascading failure in 18650 lithium ion cell arrays[J]. Applied Energy, 2019, 248: 415-428. |
66 | HUANG L, XU G J, DU X F, et al. Uncovering LiH triggered thermal runaway mechanism of a high-energy LiNi0.5Co0.2Mn0.3O2/graphite pouch cell[J]. Advanced Science, 2021, 8(14): doi: 10. 1002/advs.2021006766. |
67 | JIN Y, ZHENG Z K, WEI D H, et al. Detection of micro-scale Li dendrite via H2 gas capture for early safety warning[J]. Joule, 2020, 4(8): 1714-1729. |
68 | ZHAI H J, LI H, PING P, et al. An experimental-based Domino prediction model of thermal runaway propagation in 18, 650 lithium-ion battery modules[J]. International Journal of Heat and Mass Transfer, 2021, 181: doi: 10.1016/j.ijheatmasstransfer.2021. 122024. |
69 | CHEN R S, NOLAN A M, LU J Z, et al. The thermal stability of lithium solid electrolytes with metallic lithium[J]. Joule, 2020, 4(4): 812-821. |
70 | CHEN R S, YAO C X, YANG Q, et al. Enhancing the thermal stability of NASICON solid electrolyte pellets against metallic lithium by defect modification[J]. ACS Applied Materials & Interfaces, 2021, 13(16): 18743-18749. |
71 | HOU J, LU L, WANG L, et al. Thermal runaway of Lithium-ion batteries employing LiN(SO2F)2-based concentrated electrolytes[J]. Nature Communications, 2020, 11: doi: 10.1038/s41467-020-18868-w. |
72 | CAO W Z, ZHANG J N, LI H. Batteries with high theoretical energy densities[J]. Energy Storage Materials, 2020, 26: 46-55. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[3] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[4] | Wenlan YE, Ming ZHAO, Mingyu HU, Yang TIAN. Analysis of heat storage and release performance of tube bundle phase change heat accumulator [J]. Energy Storage Science and Technology, 2022, 11(7): 2151-2160. |
[5] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[6] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[7] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[8] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[9] | WU Xiaoling, ZHOU Tao, LIU Yuzhao, DU Yanping, CHEN Huiping, LI Shun. Numerical study on cooling enhancement of micro devices by designing turbulence based hollow micro pin-fin arrays with lateral holes [J]. Energy Storage Science and Technology, 2022, 11(6): 1980-1987. |
[10] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[11] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[12] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
[13] | Jianglong DU, Yiting LIN, Wenqi YANG, Cheng LIAN, Honglai LIU. Application of simulation in thermal safety design of lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 866-877. |
[14] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[15] | Ang LI, Xiaomeng LI, Lin YANG, Han WANG, Junfan XIANG, Yuhan LIU. Compression force calculation of redox flow battery [J]. Energy Storage Science and Technology, 2022, 11(2): 609-614. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||