Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (3): 866-877.doi: 10.19799/j.cnki.2095-4239.2022.0003
Previous Articles Next Articles
Jianglong DU1,2(), Yiting LIN1,3(), Wenqi YANG1,3(), Cheng LIAN1,2(), Honglai LIU1,2
Received:
2022-01-04
Revised:
2022-01-30
Online:
2022-03-05
Published:
2022-03-11
Contact:
Cheng LIAN
E-mail:2294567652@qq.com;lyt757418204@163.com;ywq785459103@163.com;liancheng@ecust.edu.cn
CLC Number:
Jianglong DU, Yiting LIN, Wenqi YANG, Cheng LIAN, Honglai LIU. Application of simulation in thermal safety design of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(3): 866-877.
1 | HAN X B, LU L G, ZHENG Y J, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: doi: 10.1016/j.etran.2019.100005. |
2 | XU B, LEE J, KWON D, et al. Mitigation strategies for Li-ion battery thermal runaway: A review[J]. Renewable and Sustainable Energy Reviews, 2021, 150: doi: 10.1016/j.rser.2021.111437. |
3 | SUN P Y, BISSCHOP R, NIU H C, et al. A review of battery fires in electric vehicles[J]. Fire Technology, 2020, 56(4): 1361-1410. |
4 | WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. |
5 | ABADA S, MARLAIR G, LECOCQ A, et al. Safety focused modeling of lithium-ion batteries: A review[J]. Journal of Power Sources, 2016, 306: 178-192. |
6 | KONG L C, LI Y, FENG W. Strategies to solve lithium battery thermal runaway: From mechanism to modification[J]. Electrochemical Energy Reviews, 2021, 4(4): 633-679. |
7 | YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie International Edition, 2012, 51(24): 5798-5800. |
8 | FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
9 | WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. |
10 | MANDAL B K, PADHI A K, SHI Z, et al. Thermal runaway inhibitors for lithium battery electrolytes[J]. Journal of Power Sources, 2006, 161(2): 1341-1345. |
11 | BIENSAN P, SIMON B, PÉRÈS J P, et al. On safety of lithium-ion cells[J]. Journal of Power Sources, 1999, 81/82: 906-912. |
12 | ABRAHAM D P, ROTH E P, KOSTECKI R, et al. Diagnostic examination of thermally abused high-power lithium-ion cells[J]. Journal of Power Sources, 2006, 161(1): 648-657. |
13 | FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
14 | NEWMAN J S, TOBIAS C W. Theoretical analysis of current distribution in porous electrodes[J]. Journal of the Electrochemical Society, 1962, 109(12): doi: 10.1149/1.2425269. |
15 | XIAO M, CHOE S Y. Dynamic modeling and analysis of a pouch type LiMn2O4/Carbon high power Li-polymer battery based on electrochemical-thermal principles[J]. Journal of Power Sources, 2012, 218: 357-367. |
16 | GHALKHANI M, BAHIRAEI F, NAZRI G A, et al. Electrochemical-thermal model of pouch-type lithium-ion batteries[J]. Electrochimica Acta, 2017, 247: 569-587. |
17 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
18 | LI K, HU Z Y, MA J Z, et al. A 3D and stable lithium anode for high-performance lithium-iodine batteries[J]. Advanced Materials, 2019, 31(33): doi: 10.1002/adma.201902399. |
19 | LI S Y, LIU Q L, ZHOU J J, et al. Hierarchical Co3O4 nanofiber-carbon sheet skeleton with superior Na/Li-philic property enabling highly stable alkali metal batteries[J]. Advanced Functional Materials, 2019, 29(19): doi: 10.1002/adfm.201808847. |
20 | HUANG K, LIU Y, LIU H L. Understanding and predicting lithium crystal growth on perfect and defective interfaces: A Kohn-Sham density functional study[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 37239-37246. |
21 | YURKIV V, FOROOZAN T, RAMASUBRAMANIAN A, et al. Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior[J]. Electrochimica Acta, 2018, 265: 609-619. |
22 | LI Y S, LEUNG K, QI Y. Computational exploration of the Li-electrode|electrolyte interface in the presence of a nanometer thick solid-electrolyte interphase layer[J]. Accounts of Chemical Research, 2016, 49(10): 2363-2370. |
23 | ZHANG S Y, LIU Y, LIU H L. Understanding lithium transport in SEI films: A nonequilibrium molecular dynamics simulation[J]. Molecular Simulation, 2020, 46(7): 573-580. |
24 | CHENG H R, SUN Q J, LI L L, et al. Emerging era of electrolyte solvation structure and interfacial model in batteries[J]. ACS Energy Letters, 2022, 7(1): 490-513. |
25 | ZHU X M, JIANG X Y, AI X P, et al. Bis(2,2,2-trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery[J]. Electrochimica Acta, 2015, 165: 67-71. |
26 | YOU L, DUAN K J, ZHANG G B, et al. N,N-dimethylformamide electrolyte additive via a blocking strategy enables high-performance lithium-ion battery under high temperature[J]. The Journal of Physical Chemistry C, 2019, 123(10): 5942-5950. |
27 | QIAN Y X, CHU Y L, ZHENG Z T, et al. A new cyclic carbonate enables high power/low temperature lithium-ion batteries[J]. Energy Storage Materials, 2022, 45: 14-23. |
28 | MATSUOKA N, KAMINE H, NATSUME Y, et al. Moderately concentrated acetonitrile-containing electrolytes with high ionic conductivity for durability-oriented lithium-ion batteries[J]. Chem ElectroChem, 2021, 8(16): 3095-3104. |
29 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. |
30 | LU W Q, YANG H, PRAKASH J. Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetery[J]. Electrochimica Acta, 2006, 51(7): 1322-1329. |
31 | PETIT M, CALAS E, BERNARD J. A simplified electrochemical model for modelling Li-ion batteries comprising blend and bidispersed electrodes for high power applications[J]. Journal of Power Sources, 2020, 479: doi: 10.1016/j.jpowsour.2020.228766. |
32 | BERRUETA A, URTASUN A, URSÚA A, et al. A comprehensive model for lithium-ion batteries: From the physical principles to an electrical model[J]. Energy, 2018, 144: 286-300. |
33 | MIRANDA D, ALMEIDA A M, LANCEROS-MÉNDEZ S, et al. Effect of the active material type and battery geometry on the thermal behavior of lithium-ion batteries[J]. Energy, 2019, 185: 1250-1262. |
34 | ZHOU H W, PARMANANDA M, CROMPTON K R, et al. Effect of electrode crosstalk on heat release in lithium-ion batteries under thermal abuse scenarios[J]. Energy Storage Materials, 2022, 44: 326-341. |
35 | REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. |
36 | WANG H M, SHI W J, HU F, et al. Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode[J]. Energy, 2021, 224: doi: 10.1016/j.energy. 2021.120072. |
37 | SAW L H, YE Y, TAY A A O. Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles[J]. Applied Energy, 2014, 131: 97-107. |
38 | XIE Y, HE X J, LI W, et al. A novel electro-thermal coupled model of lithium-ion pouch battery covering heat generation distribution and tab thermal behaviours[J]. International Journal of Energy Research, 2020, 44(14): 11725-11741. |
39 | PALS C R, NEWMAN J. Thermal modeling of the lithium/polymer battery (Ⅰ): Discharge behavior of a single cell[J]. Journal of the Electrochemical Society, 1995, 142(10): 3274-3281. |
40 | PALS C R, NEWMAN J. Thermal modeling of the lithium/polymer battery (Ⅱ): Temperature profiles in a cell stack[J]. Journal of the Electrochemical Society, 1995, 142(10): 3282-3288. |
41 | DU J L, TAO H L, CHEN Y X, et al. Thermal management of air-cooling lithium-ion battery pack[J]. Chinese Physics Letters, 2021, 38(11): doi: 10.1088/0256-307X/38/11/118201. |
42 | BOTTE G G, JOHNSON B A, WHITE R E. Influence of some design variables on the thermal behavior of a lithium-ion cell[J]. Journal of the Electrochemical Society, 1999, 146(3): 914-923. |
43 | SRINIVASAN V, WANG C Y. Analysis of electrochemical and thermal behavior of Li-ion cells[J]. Journal of the Electrochemical Society, 2002, 150(1): doi: 10.1149/1.1526512. |
44 | KUMARESAN K, SIKHA G, WHITE R E. Thermal model for a Li-ion cell[J]. Journal of the Electrochemical Society, 2007, 155(2): doi: 10.1149/1.2817888. |
45 | NING G, POPOV B N. Cycle life modeling of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2004, 151(10): doi: 10.1149/1.1787631. |
46 | GUO M, SIKHA G, WHITE R E. Single-particle model for a lithium-ion cell: Thermal behavior[J]. Journal of the Electrochemical Society, 2011, 158(2): A122-A132. |
47 | GUO G F, LONG B, CHENG B, et al. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. Journal of Power Sources, 2010, 195(8): 2393-2398. |
48 | WU S, BAI Y, LUAN W, et al. Thermal runaway model of high-nickel large format lithium-ion battery under thermal abuse conditions[C]//IOP Conference Series: Earth and Environmental Science, 2021. |
49 | AKINLABI A A H, SOLYALI D. Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 125: doi: 10.1016/j.rser.2020.109815. |
50 | LI X K, ZHAO J P, YUAN J L, et al. Simulation and analysis of air cooling configurations for a lithium-ion battery pack[J]. Journal of Energy Storage, 2021, 35: doi: 10.1016/j.est.2021.102270. |
51 | DUAN J B, ZHAO J P, LI X K, et al. Modeling and analysis of heat dissipation for liquid cooling lithium-ion batteries[J]. Energies, 2021, 14(14): doi: 10.3390/en14144187. |
52 | NA X Y, KANG H F, WANG T, et al. Reverse layered air flow for Li-ion battery thermal management[J]. Applied Thermal Engineering, 2018, 143: 257-262. |
53 | WANG T, TSENG K J, ZHAO J Y. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model[J]. Applied Thermal Engineering, 2015, 90: 521-529. |
54 | CHEN F F, HUANG R, WANG C M, et al. Air and PCM cooling for battery thermal management considering battery cycle life[J]. Applied Thermal Engineering, 2020, 173: doi: 10.1016/j.applthermaleng.2020.115154. |
55 | AKBARZADEH M, KALOGIANNIS T, JAGUEMONT J, et al. A comparative study between air cooling and liquid cooling thermal management systems for a high-energy lithium-ion battery module[J]. Applied Thermal Engineering, 2021, 198: doi: 10.1016/j.applthermaleng.2021.117503. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[3] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[4] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[5] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[6] | Wenlan YE, Ming ZHAO, Mingyu HU, Yang TIAN. Analysis of heat storage and release performance of tube bundle phase change heat accumulator [J]. Energy Storage Science and Technology, 2022, 11(7): 2151-2160. |
[7] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[8] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[9] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[10] | WU Xiaoling, ZHOU Tao, LIU Yuzhao, DU Yanping, CHEN Huiping, LI Shun. Numerical study on cooling enhancement of micro devices by designing turbulence based hollow micro pin-fin arrays with lateral holes [J]. Energy Storage Science and Technology, 2022, 11(6): 1980-1987. |
[11] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[12] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[13] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[14] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[15] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||