1 |
LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288.
|
2 |
HAN X B, LU L G, ZHENG Y J, et al. A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: 100005.
|
3 |
CHENG K W E, DIVAKAR B P, WU H J, et al. Battery-management system (BMS) and SOC development for electrical vehicles[J]. IEEE Transactions on Vehicular Technology, 2011, 60(1): 76-88.
|
4 |
NG M F, ZHAO J, YAN Q Y, et al. Predicting the state of charge and health of batteries using data-driven machine learning[J]. Nature Machine Intelligence, 2020, 2(3): 161-170.
|
5 |
ZHENG L F, ZHANG L, ZHU J G, et al. Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model[J]. Applied Energy, 2016, 180: 424-434.
|
6 |
LAI X, ZHENG Y J, SUN T. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries[J]. Electrochimica Acta, 2018, 259: 566-577.
|
7 |
KIM J, CHO B H. State-of-charge estimation and state-of-health prediction of a Li-ion degraded battery based on an EKF combined with a per-unit system[J]. IEEE Transactions on Vehicular Technology, 2011, 60(9): 4249-4260.
|
8 |
BI J, ZHANG T, YU H Y, et al. State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter[J]. Applied Energy, 2016, 182: 558-568.
|
9 |
SALKIND A J, FENNIE C, SINGH P, et al. Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology[J]. Journal of Power Sources, 1999, 80(1/2): 293-300.
|
10 |
ANDRE D, NUHIC A, SOCZKA-GUTH T, et al. Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles[J]. Engineering Applications of Artificial Intelligence, 2013, 26(3): 951-961.
|
11 |
HE Y J, SHEN J N, SHEN J F, et al. State of health estimation of lithium-ion batteries: A multiscale Gaussian process regression modeling approach[J]. AIChE Journal, 2015, 61(5): 1589-1600.
|
12 |
庄全超, 徐守冬, 邱祥云, 等. 锂离子电池的电化学阻抗谱分析[J]. 化学进展, 2010, 22(6): 1044-1057.
|
|
ZHUANG Q C, XU S D, QIU X Y, et al. Diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Progress in Chemistry, 2010, 22(6): 1044-1057.
|
13 |
HUET F. A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries[J]. Journal of Power Sources, 1998, 70(1): 59-69.
|
14 |
刘海洋. 基于阻抗谱时域测量的锂离子电池健康状态估计研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
|
LIU H Y. Research on state of health estimation of lithium ion batteries based on time domian electrochemical impedance spectroscopy measurement[D]. Harbin: Harbin Institute of Technology, 2018.
|
15 |
STROE D I, SWIERCZYNSKI M, STAN A I, et al. Diagnosis of lithium-ion batteries state-of-health based on electrochemical impedance spectroscopy technique[C]//2014 IEEE Energy Conversion Congress and Exposition. September 14-18, 2014, Pittsburgh, PA, USA. IEEE, 2014: 4576-4582.
|
16 |
GALEOTTI M, CINÀ L, GIAMMANCO C, et al. Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy[J]. Energy, 2015, 89: 678-686.
|
17 |
ZHU S, SUN X Y, GAO X Y, et al. Equivalent circuit model recognition of electrochemical impedance spectroscopy via machine learning[J]. Journal of Electroanalytical Chemistry, 2019, 855: 113627.
|
18 |
ZHANG Y W, TANG Q C, ZHANG Y, et al. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning[J]. Nature Communications, 2020, 11: 1706.
|
19 |
UNGUREAN L, CÂRSTOIU G, MICEA M V, et al. Battery state of health estimation: A structured review of models, methods and commercial devices[J]. International Journal of Energy Research, 2017, 41(2): 151-181.
|
20 |
SUN Z H, BEBIS G, MILLER R. Object detection using feature subset selection[J]. Pattern Recognition, 2004, 37(11): 2165-2176.
|
21 |
何志昆, 刘光斌, 赵曦晶, 等. 高斯过程回归方法综述[J]. 控制与决策, 2013, 28(8): 1121-1129, 1137.
|
|
HE Z K, LIU G B, ZHAO X J, et al. Overview of Gaussian process regression[J]. Control and Decision, 2013, 28(8): 1121-1129, 1137.
|
22 |
BLASCO X, HERRERO J M, SANCHIS J, et al. A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization[J]. Information Sciences, 2008, 178(20): 3908-3924.
|
23 |
MOMMA T, MATSUNAGA M, MUKOYAMA D, et al. Ac impedance analysis of lithium ion battery under temperature control[J]. Journal of Power Sources, 2012, 216: 304-307.
|