Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (9): 2772-2780.doi: 10.19799/j.cnki.2095-4239.2022.0246
• Special Issue for the 10th Anniversary • Previous Articles Next Articles
Received:
2022-05-09
Revised:
2022-06-11
Online:
2022-09-05
Published:
2022-08-30
CLC Number:
Huamin ZHANG. Development, cost analysis considering various durations, and advancement of vanadium flow batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2772-2780.
1 | THALLER L H. Electrically rechargeable redox flow cells: US, 3996064[P]. 1974. |
2 | CHIENG S C, KAZACOS M, SKYLLAS-KAZACOS M. Preparation and evaluation of composite membrane for vanadium redox battery applications[J]. Journal of Power Sources, 1992, 39(1): 11-19. |
3 | SUKKAR T, SKYLLAS-KAZACOS M. Membrane stability studies for vanadium redox cell applications[J]. Journal of Applied Electrochemistry, 2004, 34(2): 137-145. |
4 | SUKKAR T, SKYLLAS-KAZACOS M. Modification of membranes using polyelectrolytes to improve water transfer properties in the vanadium redox battery[J]. Journal of Membrane Science, 2003, 222(1/2): 249-264. |
5 | MENICTAS C, CHENG M, SKYLLAS-KAZACOS M. Evaluation of an NH4VO3 -derived electrolyte for the vanadium-redox flow battery[J]. Journal of Power Sources, 1993, 45(1): 43-54. |
6 | SKYLLAS-KAZACOS M. Evaluation of precipitation inhibitors for supersaturated vanadyl electrolytes for the vanadium redox battery[J]. Electrochemical and Solid-State Letters, 1999, 2(3): 121-122. |
7 | KAZACOS M, CHENG M, SKYLLAS-KAZACOS M. Vanadium redox cell electrolyte optimization studies[J]. Journal of Applied Electrochemistry, 1990, 20(3): 463-467. |
8 | HADDADI-ASL V, KAZACOS M, SKYLLAS-KAZACOS M. Conductive carbon-polypropylene composite electrodes for vanadium redox battery[J]. Journal of Applied Electrochemistry, 1995, 25(1): 29-33. |
9 | ZHONG S, KAZACOS M, BURFORD R P, et al. Fabrication and activation studies of conducting plastic composite electrodes for redox cells[J]. Journal of Power Sources, 1991, 36(1): 29-43. |
10 | SKYLLAS-KAZACOS M, RYCHCIK M, ROBINS R G, et al. New all-vanadium redox flow cell[J]. Journal of the Electrochemical Society, 1986, 133(5): 1057-1058. |
11 | SKYLLAS-KAZACOS M. An historical overview of the vanadium redox flow battery development at the University of New South Wales[R]. Australia: 2005. |
12 | SUM E, RYCHCIK M, SKYLLAS-KAZACOS M. Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery[J]. Journal of Power Sources, 1985, 16(2): 85-95. |
13 | SUM E, SKYLLAS-KAZACOS M. A study of the V(II)/V(III) redox couple for redox flow cell applications[J]. Journal of Power Sources, 1985, 15(2/3): 179-190. |
14 | GINER J, CAHILL K. Advanced screening of electrode couples[R]. United States Government, United States Department of Energy, 1980. |
15 | HAGEDORN N, HOBERECHT M, THALLER L. NASA-Redox cell-stack shunt current, pumping power, and cell-performance tradeoffs[R]. Office of Scientific and Technical Information (OSTI), 1982. |
16 | HAGEDORN N. NASA redox storage system sevelopment project. Final report[R]. Office of Scientific and Technical Information (OSTI), 1984. |
17 | NAKAYAMA T, SERA Y, MITSUDA A. The Current status of development of advanced battery electric energy storage systems in Japan[C]//Energy Conversion Engineering Conference, 1989. IECEC-89. Proceedings of the 24th Intersociety. IEEE, 1989. |
18 | LOPEZ-ATALAYA M, CODINA G, PEREZ J R, et al. Optimization studies on a Fe/Cr redox flow battery[J]. Journal of Power Sources, 1992, 39(2): 147-154. |
19 | JOHNSON D A, REID M A. Chemical and electrochemical behavior of the Cr(III)/Cr(II) half-cell in the iron-chromium redox energy storage system[J]. Journal of the Electrochemical Society, 1985, 132(5): 1058-1062. |
20 | BARTOLOZZI M. Development of redox flow batteries. A historical bibliography[J]. Journal of Power Sources, 1989, 27(3): 219-234. |
21 | 林兆勤, 江志韫. 日本铁铬氧化还原液流电池的研究进展: Ⅰ.电池研制进展[J]. 电源技术, 1991(2): 32-39, 47. |
22 | FUTAMATA M, HIGUCHI S, NAKAMURA O, et al. Transient response of 10 kW class advanced batteries to abrupt load changes[J]. Journal of Power Sources, 1988, 24(1): 31-39. |
23 | FUTAMATA M, HIGUCHI S, NAKAMURA O, et al. Performance testing of 10 kW-class advanced batteries for electric energy storage systems in Japan[J]. Journal of Power Sources, 1988, 24(2): 137-155. |
24 | ZHAO P, ZHANG H M, ZHOU H T, et al. Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes[J]. Electrochimica Acta, 2005, 51(6): 1091-1098. |
25 | ZHAO P, ZHANG H M, ZHOU H T, et al. Characteristics and performance of 10 kW class all-vanadium redox-flow battery stack[J]. Journal of Power Sources, 2006, 162(2): 1416-1420. |
26 | MA X K, ZHANG H M, SUN C X, et al. An optimal strategy of electrolyte flow rate for vanadium redox flow battery[J]. Journal of Power Sources, 2012, 203: 153-158. |
27 | YAO C, ZHANG H M, LIU T, et al. Carbon paper coated with supported tungsten trioxide as novel electrode for all-vanadium flow battery[J]. Journal of Power Sources, 2012, 218: 455-461. |
28 | YUAN Z Z, ZHU X X, LI M R, et al. A highly ion-selective zeolite flake layer on porous membranes for flow battery applications[J]. Angewandte Chemie, 2016, 128(9): 3110-3114. |
29 | ZHAO Y Y, LI M R, YUAN Z Z, et al. Advanced charged sponge-like membrane with ultrahigh stability and selectivity for vanadium flow batteries[J]. Advanced Functional Materials, 2016, 26(2): 210-218. |
30 | XU W X, ZHAO Y Y, YUAN Z Z, et al. Highly stable anion exchange membranes with internal cross-linking networks[J]. Advanced Functional Materials, 2015, 25(17): 2583-2589. |
31 | ZHANG H Z, ZHANG H M, ZHANG F X, et al. Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application[J]. Energy & Environmental Science, 2013, 6(3): 776-781. |
32 | ZHANG H Z, ZHANG H M, LI X F, et al. Silica modified nanofiltration membranes with improved selectivity for redox flow battery application[J]. Energy Environ Sci, 2012, 5(4): 6299-6303. |
33 | ZHANG H Z, ZHANG H M, LI X F, et al. Nanofiltration (NF) membranes: The next generation separators for all vanadium redox flow batteries (VRBs)? [J]. Energy & Environmental Science, 2011, 4(5): 1676-1679. |
34 | LI X F, ZHANG H M, MAI Z S, et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications[J]. Energy & Environmental Science, 2011, 4(4): 1147-1160 |
35 | MA X K, ZHANG H M, XING F. A three-dimensional model for negative half cell of the vanadium redox flow battery[J]. Electrochimica Acta, 2011, 58: 238-246. |
36 | ZHENG Q, ZHANG H M, XING F, et al. A three-dimensional model for thermal analysis in a vanadium flow battery[J]. Applied Energy, 2014, 113: 1675-1685. |
37 | ZHENG Q, XING F, LI X F, et al. Dramatic performance gains of a novel circular vanadium flow battery[J]. Journal of Power Sources, 2015, 277: 104-109. |
38 | YUE M, ZHENG Q, XING F, et al. Flow field design and optimization of high power density vanadium flow batteries: A novel trapezoid flow battery[J]. AIChE Journal, 2018, 64(2): 782-795. |
[1] | Congjia ZHANG, Minda SHI, Chen XU, Zhenyu HUANG, Song CI. Intrinsic safety mechanism and case analysis of energy storage systems based on dynamically reconfigurable battery network [J]. Energy Storage Science and Technology, 2022, 11(8): 2442-2451. |
[2] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[3] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[4] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[5] | Feng TIAN, Zhijiang CHENG, Handi YANG, Tianxiang YANG. Fault-tolerant control strategy for modular multi-level hybrid converter battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(5): 1583-1591. |
[6] | Jianlin LI, Zedong ZHANG, Yaxin LI, Yi ZHOU, Yunli YUE. Research on key technologies of mobile energy storage system under the target of carbon neutrality [J]. Energy Storage Science and Technology, 2022, 11(5): 1523-1536. |
[7] | Hao LI, Chang LIU, Bo MIAO, Jing ZHANG. Coordinative optimal dispatch of multi-park integrated energy system considering complementary cooling, heating and power and energy storage systems [J]. Energy Storage Science and Technology, 2022, 11(5): 1482-1491. |
[8] | Fulin FAN, Junhui LI, CAMPOS-GAONA David, Gangui YAN. Energy storage-friendly frequency response service markets: The UK perspective [J]. Energy Storage Science and Technology, 2022, 11(4): 1278-1288. |
[9] | Bin GUO, Jie XING, Fei YAO, Xiaomin JING. Optimal configuration of user-side hybrid energy storage based on bi-level programming model [J]. Energy Storage Science and Technology, 2022, 11(2): 615-622. |
[10] | Di LIU, Tiantian ZHANG, Yuwei PENG, Xiaomei TANG, Dan WANG, Chengxiong MAO. Shaft modeling and oscillation analysis for expansion process of compressed air energy storage system [J]. Energy Storage Science and Technology, 2022, 11(2): 563-572. |
[11] | Xinlong ZHU, Junyi WANG, Jiashuang PAN, Chuanzhi KANG, Yitao ZOU, Kaijie YANG, Hong SHI. Present situation and development of thermal management system for battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 107-118. |
[12] | Weicheng SHEN, Wenxi ZHEN, Chong SHAO, Qi XIE. Coordinated fault ride through strategy for doubly fed induction generator using a superconducting magnetic energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 136-146. |
[13] | Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA. Advances in battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. |
[14] | Xiaozhi GAO, Lei WANG, Jin TIAN, Jialu LIU, Qinghua LIU. Research on hybrid energy storage power distribution strategy based on parameter optimization variational mode decomposition [J]. Energy Storage Science and Technology, 2022, 11(1): 147-155. |
[15] | Huan ZHU, Guojing LIU, Xing ZHANG, Fen YUE, Zhenhua YU. Policy and economic comparison of natural gas power generation and battery energy storage in peak regulation [J]. Energy Storage Science and Technology, 2021, 10(6): 2392-2402. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||