Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (9): 2746-2771.doi: 10.19799/j.cnki.2095-4239.2021.0538
• Special Issue for the 10th Anniversary • Previous Articles Next Articles
Zhu JIANG1(), Boyang ZOU1, Lin CONG1, Chunping XIE2, Chuan LI3, Geng QIAO4, Yanqi ZHAO5, Binjian NIE1, Tongtong ZHANG1, Zhiwei GE6, Hongkun MA1, Yi JIN7, Yongliang LI1, Yulong DING1()
Received:
2021-11-16
Revised:
2022-05-11
Online:
2022-09-05
Published:
2022-08-30
Contact:
Yulong DING
E-mail:z.jiang.2@bham.ac.uk;Y.ding@bham.ac.uk
CLC Number:
Zhu JIANG, Boyang ZOU, Lin CONG, Chunping XIE, Chuan LI, Geng QIAO, Yanqi ZHAO, Binjian NIE, Tongtong ZHANG, Zhiwei GE, Hongkun MA, Yi JIN, Yongliang LI, Yulong DING. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771.
Table 1
Matrices used to formulate composite thermochemical energy storage materials"
载体材料 | 常用种类 | 复合材料制备方法 | 优点 | 缺点 |
---|---|---|---|---|
硅胶 | 介孔及微孔 | 溶胶凝胶法,干法浸渍 | 比表面积大,循环性好,脱附温度低,原料丰富,价格便宜 | 结构不稳定,制备过程相对复杂,对盐材料吸附率低 |
沸石 | 13X,4A,5A,Na-Y and Na-X | 干/湿法浸渍 | 比表面积大,抗压强度高,结构 和吸附性具有可调节性 | 脱附温度高,承载热化学材料比例低,价格相对较高 |
蛭石 | 2~8 mm | 物理混合法,干/湿法浸渍 | 孔隙结构大,承载热化学材料 比例高,原料丰富且价廉 | 孔隙体积变化大,吸水率低 |
膨胀石墨 | 3~10 mm | 溶胶凝胶法,物理混合法以及 干/湿法浸渍 | 热导率高,传质性能好, 比表面积大 | 循环后易发生泄漏,制备过程中易破损或剥落,或需要真空浸渍制备,价格较高 |
活性碳 | — | 干/湿法浸渍 | 热导率高,毛细力大,吸附 能力强,表面活性高 | 吸附能力易受外界条件影响,泄漏问题严重,承载热化学材料比例低,价格较高 |
金属有机骨架 | 介孔及微孔 | 干/湿法浸渍 | 比表面积极大,孔隙率高,吸附 能力强,化学结构可调 | 合成过程复杂,价格昂贵, 稳定性差 |
Table 2
Typical salt hydrates based composite thermochemical materials"
复合材料 | 制备方法 | 检测方法 | 充热温度 /℃ | 放热温 /℃ | 能量密度 | 循环 次数 | 参考 文献 |
---|---|---|---|---|---|---|---|
沸石13X/MgCl2 | 浸渍 | TG-DSC,30~200 ℃, 1 K/min,20 mL/min N2 | 200 | 30 | 1368 J/g | 20 | [ |
氧化石墨烯凝胶/ MgCl2·6H2O | 水热和冷冻 干燥 | TG-DSC,25~400 ℃, 10 K/min,20 mL/min N2 | 1598 J/g | — | [ | ||
膨胀天然石墨/CaCl2 | 真空浸渍 | TG-DSC,5 K/min, 50 mL/min N2 | 200 | 25 | 1310 J/g | — | [ |
硅胶/CaCl2 | 浸渍 | TG-DSC-蒸汽发生器 | 80 | 30 | 1080.51 J/g | 10 | [ |
沸石13X/MgSO4/ENG-TSA | 混合和浸渍 | 250 | 25~40 | 120.3 kWh/m3 (550.86 J/g) | — | [ | |
活性氧化铝/MgSO4 | 浸渍 | 200 | 25~40 | 82.6 kWh/m3 (395.13 J/g) | — | [ | |
蛭石/SrBr2 | 浸渍 | STA,20~300 ℃,5 K/min,30 mL/min N2 | 30 | 1739.46 J/g (105.36 kWh/m3) | — | [ | |
MOF/SrBr2 | 浸渍 | TG-DSC,30~80 ℃,1 K/min,50 mL/min N2,1.25 kPa 水蒸气分压 | 80 | 30 | 233 kWh/m3 | 10 | [ |
蛭石/LiCl | 浸渍 | TG-DSC | 85 | 35 | 1890~2150 J/g | 14 | [ |
Table 7
The absorptive/adsorptive thermochemical energy storage systems"
应用 | 反应对 | 充能速度/kW | 释能速度/kW | 储能量/kWh | 储能密度/kWh·m-3 | 参考文献 |
---|---|---|---|---|---|---|
太阳能制热 | NaOH/H2O | 1 (95 ℃) | 1 (70 ℃) | 8.9 | 5 | [ |
太阳能制冷 | LiCl/H2O | 15 (87 ℃) | 8(30 ℃) | 35 | 86 | [ |
制热 | Zeolite 13X/H2O | — | 0.8~1.8 (55 ℃) | 1 | 57.8 | [ |
车载空调 | Zeolite 13X/H2O | — | 4.1 (15 ℃) | 5.5 | 167 | [ |
太阳能制热 | SrBr2-Expanded Graphite /H2O | — | 2.5~4.0 | 40 | 214 Wh/kg | [ |
建筑空调 | BaCl2-Expanded /NH3 | 7 ( 60~70 ℃) | 5 (4 ℃) | 20 | 114 Wh/kg | [ |
制热 | MgCl2/H2O | — | 0.15 (64 ℃) | 2.4 | 139 | [ |
1 | Intergovernmental Panel on Climate Change (IPCC). Global Warming of 1.5 ℃[EB/OL] [2021-09-19]. https://www.ipcc.ch/sr15/. |
2 | NET Zero Tracker | Energy & Climate Intelligence Unit[EB/OL]. [2021-08-29]. https://eciu.net/netzerotracker. |
3 | Innovation outlook: Thermal energy storage[R]. International Renewable Energy Agency, 2020. https://www.irena.org/publications/2020/Nov/Innovation-outlook-Thermal-energy-storage |
4 | TAYLOR P G, BOLTON R, STONE D, et al. Developing pathways for energy storage in the UK using a coevolutionary framework[J]. Energy Policy, 2013, 63: 230-243. |
5 | GE Z W, LI Y L, LI D C, et al. Thermal energy storage: Challenges and the role of particle technology[J]. Particuology, 2014, 15: 2-8.http://dx.doi.org/10.1016/j.partic.2014.03.003 |
6 | ZHENG H B, SONG C, BAO C, et al. Dark calcium carbonate particles for simultaneous full-spectrum solar thermal conversion and large-capacity thermochemical energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 207: 110364. |
7 | JANZ G J, TRUONG G N. Melting and premelting properties of the potassium nitrate-sodium nitrite-sodium nitrate eutectic system[J]. Journal of Chemical & Engineering Data, 1983, 28(2): 201-202. |
8 | PENG Q, YANG X X, DING J, et al. Design of new molten salt thermal energy storage material for solar thermal power plant[J]. Applied Energy, 2013, 112: 682-689.http://www.sciencedirect.com/science/article/pii/S0306261912007672 |
9 | DING W J, SHI H, JIANU A, et al. Molten chloride salts for next generation concentrated solar power plants: Mitigation strategies against corrosion of structural materials[J]. Solar Energy Materials and Solar Cells, 2019, 193: 298-313. |
10 | DING W J, GOMEZ-VIDAL J, BONK A, et al. Molten chloride salts for next generation CSP plants: Electrolytical salt purification for reducing corrosive impurity level[J]. Solar Energy Materials and Solar Cells, 2019, 199: 8-15. |
11 | WANG T, MANTHA D, REDDY R G. Thermal stability of the eutectic composition in LiNO3-NaNO3-KNO3 ternary system used for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2012, 100: 162-168. |
12 | TENG L, XUAN Y M, DA Y, et al. Modified Ca-Looping materials for directly capturing solar energy and high-temperature storage[J]. Energy Storage Materials, 2020, 25: 836-845. |
13 | SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345. |
14 | ORÓ E, DE GRACIA A, CASTELL A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications[J]. Applied Energy, 2012, 99: 513-533. |
15 | ZALBA B, MARı́N J M, CABEZA L F, et al. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251-283. |
16 | DINÇER İ, ROSEN M A. Thermal energy storage: Systems and applications[M]. New York: John Wiley & Sons, 2021. |
17 | 葛志伟, 叶锋, MATHIEU Lasfargues, 等. 中高温储热材料的研究现状与展望[J]. 储能科学与技术, 2012, 1(2): 89-102. |
GE Z W, YE F, LASFARGUES M, et al. Recent progress and prospective of medium and high temperatures thermal energy storage materials[J]. Energy Storage Science and Technology, 2012, 1(2): 89-102. | |
18 | OLIVARES R I. The thermal stability of molten nitrite/nitrates salt for solar thermal energy storage in different atmospheres[J]. Solar Energy, 2012, 86(9): 2576-2583. |
19 | VEERAKUMAR C, SREEKUMAR A. Phase change material based cold thermal energy storage: Materials, techniques and applications - A review[J]. International Journal of Refrigeration, 2016, 67: 271-289. |
20 | ZHANG P, XIAO X, MA Z W. A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied Energy, 2016, 165: 472-510.https://www.sciencedirect.com/science/article/pii/S0306261915016165 |
21 | LENG G H, NAVARRO H, YU Q H, et al. Design of composite materials/devices for thermal storage-A critical review[J]. Veruscript Functional Nanomaterials, 2018, 2: 1-28.https://doi.org/10.22261/ghv5w9https://doi.org/10.22261/ghv5w9 |
22 | PIELICHOWSKA K, PIELICHOWSKI K. Phase change materials for thermal energy storage[J]. Progress in Materials Science, 2014, 65: 67-123. |
23 | MILIÁN Y E, GUTIÉRREZ A, GRÁGEDA M, et al. A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 983-999. |
24 | 喻彩梅, 章学来, 华维三. 十水硫酸钠相变储能材料研究进展[J]. 储能科学与技术, 2021, 10(3): 1016-1024. |
YU C M, ZHANG X L, HUA W S. Research progress of sodium sulfate decahydrate phase change material[J]. Energy Storage Science and Technology, 2021, 10(3): 1016-1024. | |
25 | LU W, TASSOU S A. Experimental study of the thermal characteristics of phase change slurries for active cooling[J]. Applied Energy, 2012, 91(1): 366-374. |
26 | 白庆华, 李鸿义. 增稠剂的研究进展[J]. 河北化工, 2011, 34(7): 46-48. |
BAI Q H, LI H Y. Recent advances of thickener[J]. Hebei Chemical Industry, 2011, 34(7): 46-48. | |
27 | REUVERS A J. Control of rheology of water-borne paints using associative thickeners[J]. Progress in Organic Coatings, 1999, 35(1/2/3/4): 171-181. |
28 | EFIMOVA A, PINNAU S, MISCHKE M, et al. Development of salt hydrate eutectics as latent heat storage for air conditioning and cooling[J]. Thermochimica Acta, 2014, 575: 276-278. |
29 | 刘欣. 十水硫酸钠相变蓄热材料的改性及其在模拟机房中的应用[D]. 广州: 华南理工大学, 2013.LIU X. Modification of sodium sulfate decahydrate phase change thermal storage materials and application in communication base station energy conservation[D]. Guangzhou: South China University of Technology, 2013. |
30 | SAEED R M, SCHLEGEL J P, CASTANO C, et al. Preparation and enhanced thermal performance of novel (solid to gel) form-stable eutectic PCM modified by nano-graphene platelets[J]. Journal of Energy Storage, 2018, 15: 91-102. |
31 | LIU Z X, YU Z, YANG T T, et al. A review on macro-encapsulated phase change material for building envelope applications[J]. Building and Environment, 2018, 144: 281-294. |
32 | PRAJAPATI D G, KANDASUBRAMANIAN B. A review on polymeric-based phase change material for thermo-regulating fabric application[J]. Polymer Reviews, 2020, 60(3): 389-419. |
33 | ALVA G, LIN Y X, LIU L K, et al. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review[J]. Energy and Buildings, 2017, 144: 276-294. |
34 | SARI A, ALKAN C, DÖĞÜŞCÜ D K, et al. Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications[J]. Solar Energy, 2015, 115: 195-203. |
35 | FUKAHORI R, NOMURA T, ZHU C Y, et al. Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage[J]. Applied Energy, 2016, 170: 324-328. |
36 | TAO Y B, HE Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245-259. |
37 | LENG G H, QIAO G, JIANG Z, et al. Micro encapsulated & form-stable phase change materials for high temperature thermal energy storage[J]. Applied Energy, 2018, 217: 212-220. |
38 | LI C, LI Q, CONG L, et al. MgO based composite phase change materials for thermal energy storage: The effects of MgO particle density and size on microstructural characteristics as well as thermophysical and mechanical properties[J]. Applied Energy, 2019, 250: 81-91.https://www.sciencedirect.com/science/article/pii/S030626191930755X-aep-article-footnote-id1 |
39 | AYDIN D, CASEY S P, RIFFAT S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2014, 41: 356-367. |
40 | DONKERS P A J, SÖGÜTOGLU L C, HUININK H P, et al. A review of salt hydrates for seasonal heat storage in domestic applications[J]. Applied Energy, 2017, 199: 45-68. |
41 | LIU M, STEVEN TAY N H, BELL S, et al. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1411-1432. |
42 | PERMYAKOVA A, WANG S, COURBON E, et al. Design of salt-metal organic framework composites for seasonal heat storage applications[J]. Journal of materials chemistry A, 2017, 5(25): 12889-12898. |
43 | WEI S Y, HAN R, SU Y L, et al. Development of pomegranate-type CaCl2@C composites via a scalable one-pot pyrolysis strategy for solar-driven thermochemical heat storage[J]. Energy Conversion and Management, 2020, 212: 112694. |
44 | PALACIOS A, NAVARRO M E, BARRENECHE C, et al. Hybrid 3 in 1 thermal energy storage system - Outlook for a novel storage strategy[J]. Applied Energy, 2020, 274: 115024. |
45 | MAHON D, CLAUDIO G, EAMES P. A study of novel high performance and energy dense zeolite composite materials for domestic interseasonal thermochemical energy storage[J]. Energy Procedia, 2019, 158: 4489-4494. |
46 | ZHOU H, ZHANG D. Effect of graphene oxide aerogel on dehydration temperature of graphene oxide aerogel stabilized MgCl2⋅6H2O composites[J]. Solar Energy, 2019, 184: 202-208. |
47 | SÖGÜTOGLU L C, DONKERS P A J, FISCHER H R, et al. In-depth investigation of thermochemical performance in a heat battery: Cyclic analysis of K2CO3, MgCl2 and Na2S[J]. Applied Energy, 2018, 215: 159-173. |
48 | XU C, XIE Y Y, LIAO Z R, et al. Numerical study on the desorption process of a thermochemical reactor filled with MgCl2 ·6H2O for seasonal heat storage[J]. Applied Thermal Engineering, 2019, 146: 785-794. |
49 | RICHTER M, HABERMANN E M, SIEBECKE E, et al. A systematic screening of salt hydrates as materials for a thermochemical heat transformer[J]. Thermochimica Acta, 2018, 659: 136-150. |
50 | CALABRESE L, BRANCATO V, PALOMBA V, et al. Innovative composite sorbent for thermal energy storage based on a SrBr2 ·6H2O filled silicone composite foam[J]. Journal of Energy Storage, 2019, 26: 100954. |
51 | COURBON E, D'ANS P, PERMYAKOVA A, et al. A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability[J]. Applied Energy, 2017, 190: 1184-1194. |
52 | LI W, GUO H, ZENG M, et al. Performance of SrBr2 ·6H2O based seasonal thermochemical heat storage in a novel multilayered sieve reactor[J]. Energy Conversion and Management, 2019, 198: 111843. |
53 | GAEINI M, ROUWS A L, SALARI J W O, et al. Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage[J]. Applied Energy, 2018, 212: 1165-1177. |
54 | COURBON E, D'ANS P, PERMYAKOVA A, et al. Further improvement of the synthesis of silica gel and CaCl2 composites: Enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications[J]. Solar Energy, 2017, 157: 532-541. |
55 | ZHANG Y N, WANG R Z, LI T X. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage[J]. Energy, 2018, 156: 240-249. |
56 | FRAZZICA A, BRANCATO V, CAPRÌ A, et al. Development of "salt in porous matrix" composites based on LiCl for sorption thermal energy storage[J]. Energy, 2020, 208: 118338. |
57 | GREKOVA A D, GORDEEVA L G, LU Z S, et al. Composite "LiCl/MWCNT" as advanced water sorbent for thermal energy storage: Sorption dynamics[J]. Solar Energy Materials and Solar Cells, 2018, 176: 273-279. |
58 | BRANCATO V, GORDEEVA L G, GREKOVA A D, et al. Water adsorption equilibrium and dynamics of LICL/MWCNT/PVA composite for adsorptive heat storage[J]. Solar Energy Materials and Solar Cells, 2019, 193: 133-140. |
59 | BRANCATO V, CALABRESE L, PALOMBA V, et al. MgSO4 ·7H2O filled macro cellular foams: An innovative composite sorbent for thermo-chemical energy storage applications for solar buildings[J]. Solar Energy, 2018, 173: 1278-1286. |
60 | FERCHAUD C J, SCHERPENBORG R A A, ZONDAG H A, et al. Thermochemical seasonal solar heat storage in salt hydrates for residential applications - Influence of the water vapor pressure on the desorption kinetics of MgSO4.7H2O[J]. Energy Procedia, 2014, 57: 2436-2440. |
61 | N'TSOUKPOE K E, SCHMIDT T, RAMMELBERG H U, et al. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage[J]. Applied Energy, 2014, 124: 1-16. |
62 | KELLY J T, WEXLER A S. Thermodynamics of carbonates and hydrates related to heterogeneous reactions involving mineral aerosol[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D11): D11201. |
63 | ZHANG Y N, WANG R Z, LI T X, et al. Thermochemical characterizations of novel vermiculite-LiCl composite sorbents for low-temperature heat storage[J]. Energies, 2016, 9(10): 854. |
64 | FOPAH-LELE A, TAMBA J G. A review on the use of SrBr2 ·6H2O as a potential material for low temperature energy storage systems and building applications[J]. Solar Energy Materials and Solar Cells, 2017, 164: 175-187. |
65 | D'ANS P, COURBON E, PERMYAKOVA A, et al. A new strontium bromide MOF composite with improved performance for solar energy storage application[J]. Journal of Energy Storage, 2019, 25: 100881. |
66 | XU J X, LI T X, CHAO J W, et al. High energy-density multi-form thermochemical energy storage based on multi-step sorption processes[J]. Energy, 2019, 185: 1131-1142. |
67 | KORHAMMER K, DRUSKE M M, FOPAH-LELE A, et al. Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage[J]. Applied Energy, 2016, 162: 1462-1472. |
68 | BRANCATO V, GORDEEVA L G, SAPIENZA A, et al. Experimental characterization of the LiCl/vermiculite composite for sorption heat storage applications[J]. International Journal of Refrigeration, 2019, 105: 92-100. |
69 | ZHANG Y L, MIAO Q, JIA X, et al. Diatomite-based magnesium sulfate composites for thermochemical energy storage: Preparation and performance investigation[J]. Solar Energy, 2021, 224: 907-915. |
70 | MIAO Q, ZHANG Y L, JIA X, et al. MgSO4-expanded graphite composites for mass and heat transfer enhancement of thermochemical energy storage[J]. Solar Energy, 2021, 220: 432-439. |
71 | PALACIOS A, NAVARRO M E, BARRENECHE C, et al. Hybrid 3 in 1 thermal energy storage system—Outlook for a novel storage strategy[J]. Applied Energy, 2020, 274: 115024. |
72 | XU S Z, LEMINGTON, WANG R Z, et al. A zeolite 13X/magnesium sulfate-water sorption thermal energy storage device for domestic heating[J]. Energy Conversion and Management, 2018, 171: 98-109. |
73 | XU S Z, WANG R Z, WANG L W, et al. Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage[J]. Energy, 2019, 167: 889-901. |
74 | ZHANG Y N, WANG R Z, ZHAO Y J, et al. Development and thermochemical characterizations of vermiculite/SrBr2 composite sorbents for low-temperature heat storage[J]. Energy, 2016, 115: 120-128. |
75 | RAO Z H, WANG S F, PENG F F. Self diffusion of the nano-encapsulated phase change materials: A molecular dynamics study[J]. Applied Energy, 2012, 100: 303-308. |
76 | RAO Z H, WANG S F, PENG F F. Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials[J]. International Journal of Heat and Mass Transfer, 2013, 66: 575-584. |
77 | ZHANG X, WANG Y, XIA R, et al. Effect of chain configuration on thermal conductivity of polyethylene—A molecular dynamic simulation study[J]. Chinese Journal of Polymer Science, 2020, 38(12): 1418-1425. |
78 | LEE S L, SAIDUR R, SABRI M F M, et al. Effects of the particle size and temperature on the efficiency of nanofluids using molecular dynamic simulation[J]. Numerical Heat Transfer, Part A: Applications, 2016, 69(9): 996-1013. |
79 | LEE S L, SAIDUR R, SABRI M F M, et al. Molecular dynamic simulation on the thermal conductivity of nanofluids in aggregated and non-aggregated states[J]. Numerical Heat Transfer, Part A: Applications, 2015, 68(4): 432-453. |
80 | ZHANG M X, WANG C L, LUO A L, et al. Molecular dynamics simulation on thermophysics of paraffin/EVA/graphene nanocomposites as phase change materials[J]. Applied Thermal Engineering, 2020, 166: 114639. |
81 | SHIN D, TIZNOBAIK H, BANERJEE D. Specific heat mechanism of molten salt nanofluids[J]. Applied Physics Letters, 2014, 104(12): 121914. https://doi.org/10.1063/1.4868254 |
82 | CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature[J]. Solar Energy Materials and Solar Cells, 2017, 167: 60-69. |
83 | PÉREZ F J, ENCINAS-SÁNCHEZ V, GARCÍA-MARTÍN G, et al. Dynamic pilot plant facility for applications in CSP: Evaluation of corrosion resistance of A516 in a nitrate molten salt mixture Dip-coated ZrO2-Y2O3 coatings tested in molten salts for CSP applications[C]// AIP Conference Proceedings, 2017, 1200021(10). [2018-02-09]. https://doi.org/10.1063/1.4984503. |
84 | TIZNOBAIK H, BANERJEE D, SHIN D. Effect of formation of "long range" secondary dendritic nanostructures in molten salt nanofluids on the values of specific heat capacity[J]. International Journal of Heat and Mass Transfer, 2015, 91: 342-346. |
85 | RIZVI S M M, SHIN D. Mechanism of heat capacity enhancement in molten salt nanofluids[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120260. |
86 | QIAO G, ALEXIADIS A, DING Y. Simulation study of anomalous thermal properties of molten nitrate salt[J/OL]. Powder Technology, 2017, 314: 660-664.http://linkinghub.elsevier.com/retrieve/pii/S0032591016307951 |
87 | QIAO G, LASFARGUES M, ALEXIADIS A, et al. Simulation and experimental study of the specific heat capacity of molten salt based nanofluids[J]. Applied Thermal Engineering, 2017, 111: 1517-1522.http://dx.doi.org/10.1016/j.applthermaleng.2016.07.159. |
88 | ANAGNOSTOPOULOS A, ALEXIADIS A, DING Y. Molecular dynamics simulation of solar salt (NaNO3-KNO3) mixtures[J]. Solar Energy Materials and Solar Cells, 2019, 200: 109897.http://dx.doi.org/10.1016/j.solmat.2019.04.019. |
89 | CARRASCO J, ILLAS F, LOPEZ N. Dynamic ion pairs in the adsorption of isolated water molecules on alkaline-earth oxide (001) surfaces.[J]. Physical Review Letters, 2008, 100(1): 016101.http://europepmc.org/article/MED/18232787 |
90 | 闫君. CaO/Ca(OH)2热化学储热机理及试验研究[D]. 上海: 上海交通大学, 2016.YAN J. Mechanism and experimental study of CaO/Ca(OH)2 thermochemical heat storage system[D]. Shanghai: Shanghai Jiao Tong University, 2016. |
91 | XU M, HUAI X, CAI J. Agglomeration behavior of calcium hydroxide/calcium oxide as thermochemical heat storage material: A reactive molecular dynamics study[J]. Journal of Physical Chemistry C, 2017, 121(5): 3025-3033.https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b08615 |
92 | RINDT C C M, GAASTRA-NEDEA S V. Modeling thermochemical reactions in thermal energy storage systems[M]//Advances in Thermal Energy Storage Systems. Amsterdam: Elsevier, 2015: 375-415. |
93 | VELMURUGAN K, KUMARASAMY S, WONGWUTTANASATIAN T, et al. Review of PCM types and suggestions for an applicable cascaded PCM for passive PV module cooling under tropical climate conditions[J]. Journal of Cleaner Production, 2021, 293: 126065. |
94 | PCM phase change material materials manufacturers[EB/OL]. [2021-06-01]. http://www.teappcm.com/.http://www.teappcm.com/ |
95 | AGYENIM F, HEWITT N, EAMES P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 615-628. |
96 | KENISARIN M, MAHKAMOV K. Solar energy storage using phase change materials[J]. Renewable and Sustainable Energy Reviews, 2007, 11(9): 1913-1965. |
97 | Phase change materials consulting and thermal design services by PCM thermal solutions[EB/OL]. [2021-06-01]. http://www.pcm-solutions.com/.http://www.pcm-solutions.com/http://www.pcm-solutions.com/ |
98 | NORVELL C, SAILOR D J, DUSICKA P. The effect of microencapsulated phase-change material on the compressive strength of structural concrete[J]. Journal of Green Building, 2013, 8(3): 116-124. |
99 | SHIN D H, PARK J, CHOI S H, et al. A new type of heat storage system using the motion of phase change materials in an elliptical-shaped capsule[J]. Energy Conversion and Management, 2019, 182: 508-519. |
100 | 案例|中国清洁供热蓄热典型项目汇总-国家太阳能光热产业技术创新战略联盟[EB/OL]. [2021-09-28]. http://www.cnste.org/html/xiangmu/2019/0807/5287.html. |
101 | NAVARRO M E, TRUJILLO A P, JIANG Z, et al. Manufacture of thermal energy storage materials[M]// DING Y L. Thermal energy storage: materials, devices, systems and applications// Energy and Environment Series. Royal Society of Chemistry, 2021.https://pubs.rsc.org/en/content/chapter/bk9781788017176-00121/978-1-78801-717-6 |
102 | MORENO P, MIRÓ L, SOLÉ A, et al. Corrosion of metal and metal alloy containers in contact with phase change materials (PCM) for potential heating and cooling applications[J]. Applied Energy, 2014, 125: 238-245.http://dx.doi.org/10.1016/j.apenergy. 2014.03.022 |
103 | FERRER G, SOLÉ A, BARRENECHE C, et al. Corrosion of metal containers for use in PCM energy storage[J]. Renewable Energy, 2015, 76: 465-469. |
104 | XU G P, WANG K, DONG X P, et al. Review on corrosion resistance of mild steels in liquid aluminum[J]. Journal of Materials Science & Technology, 2021, 71: 12-22. |
105 | PALACIOS A, NAVARRO M E, JIANG Z, et al. High-temperature corrosion behaviour of metal alloys in commercial molten salts[J]. Solar Energy, 2020, 201: 437-452. |
106 | GARCÍA-MARTÍN G, LASANTA M I, ENCINAS-SÁNCHEZ V, et al. Evaluation of corrosion resistance of A516 Steel in a molten nitrate salt mixture using a pilot plant facility for application in CSP plants[J]. Solar Energy Materials and Solar Cells, 2017, 161: 226-231. |
107 | FARRELL A J, NORTON B, KENNEDY D M. Corrosive effects of salt hydrate phase change materials used with aluminium and copper[J]. Journal of Materials Processing Technology, 2006, 175(1/2/3): 198-205.https://www.sciencedirect.com/science/article/pii/S0924013605004176 |
108 | 徐桂芝, 胡晓, 金翼, 等. 高温相变储热换热装置仿真建模及分析[J]. 储能科学与技术, 2019, 8(2): 338-346.XU G Z, HU X, JIN Y, et al. Simulation modeling and analysis of a high temperature phase change heat storage and exchange device[J]. Energy Storage Science and Technology, 2019, 8(2): 338-346.https://kns.cnki.net/KCMS/detail/detail.aspx?filename=CNKX201902017&dbname=CJFD&dbcode=CJFQhttps://oversea.cnki.net/KCMS/detail/detail.aspx?filename=CNKX201902017&dbname=CJFD&dbcode=CJFQ |
109 | GROSU Y, ANAGNOSTOPOULOS A, NAVARRO M E, et al. Inhibiting hot corrosion of molten Li2CO3-Na2CO3-K2CO3 salt through graphitization of construction materials for concentrated solar power[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110650. |
110 | GONZALEZ M, NITHIYANANTHAM U, CARBÓ-ARGIBAY E, et al. Graphitization as efficient inhibitor of the carbon steel corrosion by molten binary nitrate salt for thermal energy storage at concentrated solar power[J]. Solar Energy Materials and Solar Cells, 2019, 203: 110172. |
111 | ENCINAS-SÁNCHEZ V, BATUECAS E, MACÍAS-GARCÍA A, et al. Corrosion resistance of protective coatings against molten nitrate salts for thermal energy storage and their environmental impact in CSP technology[J]. Solar Energy, 2018, 176: 688-697. |
112 | SIDHU T S, PRAKASH S, AGRAWAL R D. Characterisations of HVOF sprayed NiCrBSi coatings on Ni-and Fe-based superalloys and evaluation of cyclic oxidation behaviour of some Ni-based superalloys in molten salt environment[J]. Thin Solid Films, 2006, 515(1): 95-105. |
113 | GROLL M, BROST O, HERH'E D. Corrosion of steels in contact with salt eutectics as latent heat storage materials: influence of water and other impurities[J]. Heal Recovery Systems & CHP, 1990, 10(4/5): 567-572. |
114 | GROSU Y, BONDARCHUK O, FAIK A. The effect of humidity, impurities and initial state on the corrosion of carbon and stainless steels in molten HitecXL salt for CSP application[J]. Solar Energy Materials and Solar Cells, 2018, 174: 34-41. |
115 | GULFAM R, ZHANG P, MENG Z N. Advanced thermal systems driven by paraffin-based phase change materials-A review[J]. Applied Energy, 2019, 238: 582-611. |
116 | PEREIRA DA CUNHA J, EAMES P. Thermal energy storage for low and medium temperature applications using phase change materials - A review[J]. Applied Energy, 2016, 177: 227-238. |
117 | JEGADHEESWARAN S, POHEKAR S D. Performance enhancement in latent heat thermal storage system: A review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2225-2244. |
118 | AL-ABIDI A A, BIN MAT S, SOPIAN K, et al. CFD applications for latent heat thermal energy storage: A review[J]. Renewable and Sustainable Energy Reviews, 2013, 20: 353-363. |
119 | JEGADHEESWARAN S, POHEKAR S D, KOUSKSOU T. Exergy based performance evaluation of latent heat thermal storage system: A review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(9): 2580-2595. |
120 | 赵岩, 王亮, 陈海生, 等. 填充床显热及相变储热特性分析[J]. 工程热物理学报, 2012, 33(12): 2052-2057. |
ZHAO Y, WANG L, CHEN H S, et al. Analysis on thermal storage characteristic of sensible and latent heat in packed beds[J]. Journal of Engineering Thermophysics, 2012, 33(12): 2052-2057. | |
121 | REGIN A F, SOLANKI S C, SAINI J S. Heat transfer characteristics of thermal energy storage system using PCM capsules: A review[J]. Renewable and Sustainable Energy Reviews, 2008, 12(9): 2438-2458. |
122 | KARTHIKEYAN S, VELRAJ R. Numerical investigation of packed bed storage unit filled with PCM encapsulated spherical containers - A comparison between various mathematical models[J]. International Journal of Thermal Sciences, 2012, 60: 153-160. |
123 | YANG L, ZHANG X S, XU G Y. Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points[J]. Energy and Buildings, 2014, 68: 639-646. |
124 | 金波,李明佳,徐阳,马朝,等. 双层填充床储热器储热性能实验研究[J]. 西安交通大学学报, 2018, 52(7): 80-86. |
JIN B, LI M J, XU Y, MA C, et al. Experimental study on the heat storage performance of double-layer filled bed heat storage[J].Journal of Xi'an Jiaotong University, 2018, 52(7): 80-86. | |
125 | ZHAO B, LI C, JIN Y, et al. Heat transfer performance of thermal energy storage components containing composite phase change materials[J]. IET Renewable Power Generation, 2016, 10(10): 1515-1522.https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-rpg.2016.0026 |
126 | JOHNSON M, VOGEL J, HEMPEL M, et al. Design of high temperature thermal energy storage for high power levels[J]. Sustainable Cities and Society, 2017, 35: 758-763. |
127 | JOHNSON M, HÜBNER S, BRAUN M, et al. Assembly and attachment methods for extended aluminum fins onto steel tubes for high temperature latent heat storage units[J]. Applied Thermal Engineering, 2018, 144: 96-105. |
128 | LAING D, BAUER T, BREIDENBACH N, et al. Development of high temperature phase-change-material storages[J]. Applied Energy, 2013, 109: 497-504. |
129 | PIZZOLATO A, SHARMA A, GE R H, et al. Maximization of performance in multi-tube latent heat storage—Optimization of fins topology, effect of materials selection and flow arrangements[J]. Energy, 2020, 203: 114797. |
130 | WANG P L, YAO H, LAN Z P, et al. Numerical investigation of PCM melting process in sleeve tube with internal fins[J]. Energy Conversion and Management, 2016, 110: 428-435. |
131 | PIZZOLATO A, SHARMA A, MAUTE K, et al. Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization[J]. Applied Energy, 2017, 208: 210-227. |
132 | PIZZOLATO A, SHARMA A, MAUTE K, et al. Topology optimization for heat transfer enhancement in Latent Heat Thermal Energy Storage[J]. International Journal of Heat and Mass Transfer, 2017, 113: 875-888. |
133 | ELBAHJAOUI R, EL QARNIA H. Thermal performance of a solar latent heat storage unit using rectangular slabs of phase change material for domestic water heating purposes[J]. Energy and Buildings, 2019, 182: 111-130. |
134 | CAMPOS-CELADOR Á, DIARCE G, ZUBIAGA J T, et al. Design of a finned plate latent heat thermal energy storage system for domestic applications[J]. Energy Procedia, 2014, 48: 300-308. |
135 | LIU M, BELUSKO M, STEVEN TAY N H, et al. Impact of the heat transfer fluid in a flat plate phase change thermal storage unit for concentrated solar tower plants[J]. Solar Energy, 2014, 101: 220-231. |
136 | LIU M, BRUNO F, SAMAN W. Thermal performance analysis of a flat slab phase change thermal storage unit with liquid-based heat transfer fluid for cooling applications[J]. Solar Energy, 2011, 85(11): 3017-3027. |
137 | BECHIRI M, MANSOURI K. Exact solution of thermal energy storage system using PCM flat slabs configuration[J]. Energy Conversion and Management, 2013, 76: 588-598. |
138 | CHARVÁT P, KLIMEŠ L, OSTRÝ M. Numerical and experimental investigation of a PCM-based thermal storage unit for solar air systems[J]. Energy and Buildings, 2014, 68: 488-497. |
139 | SAEED R M, SCHLEGEL J P, SAWAFTA R, et al. Plate type heat exchanger for thermal energy storage and load shifting using phase change material[J]. Energy Conversion and Management, 2019, 181: 120-132. |
140 | 郭茶秀, 张务军, 魏新利, 等. 板式石蜡储热器传热的数值模拟[J]. 能源技术, 2006, 27(6): 243-248. |
GUO C X, ZHANG W J, WEI X L, et al. Numerical simulation for heat transfer problem in paraffin storage slab[J]. Energy Technology, 2006, 27(6): 243-248. | |
141 | VAKILALTOJJAR S M. Phase change thermal storage system for space heating and cooling[D]. Adelaide: University of South Australia, 2000.https://xs.paodekuaiweixinqun.com/scholar?hl=zh-CN&as_sdt=0%2C5&q=Phase+change+thermal+storage+system+for+space+heating+and+cooling.+PhD+Thesis%2C+University+of+South+Australia%2C+2000.&btnG= |
142 | LI C, LI Q, DING Y L. Carbonate salt based composite phase change materials for medium and high temperature thermal energy storage: From component to device level performance through modelling[J]. Renewable Energy, 2019, 140: 140-151. |
143 | 叶锋, 曲江兰, 仲俊瑜, 等. 相变储热材料研究进展[J]. 过程工程学报, 2010, 10(6): 1231-1241. |
YE F, QU J L, ZHONG J Y, et al. Research advances in phase change materials for thermal energy storage[J]. The Chinese Journal of Process Engineering, 2010, 10(6): 1231-1241. | |
144 | LI C, LI Q, LI Y L, et al. Heat transfer of composite phase change material modules containing a eutectic carbonate salt for medium and high temperature thermal energy storage applications[J]. Applied Energy, 2019, 238: 1074-1083. |
145 | GE Z W, YE F, DING Y L. Composite materials for thermal energy storage: Enhancing performance through microstructures[J]. ChemSusChem, 2014, 7(5): 1318-1325.https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/cssc.201300878 |
146 | Energy Use and Carbon Emissions of UK Telecoms Hold Steady [EB/OL]. [2022-07-13]. https://www.ispreview.co.uk/index.php/2020/05/energy-use-and-carbon-emissions-of-uk-telecoms-hold-steady.html |
147 | AYANG A, NGOHE-EKAM P S, VIDEME B, et al. Power consumption: Base stations of telecommunication in Sahel zone of Cameroon: Typology based on the power consumption—model and energy savings[J]. Journal of Energy, 2016, 2016: 3161060. |
148 | NADJAHI C, LOUAHLIA H, LEMASSON S. A review of thermal management and innovative cooling strategies for data center[J]. Sustainable Computing: Informatics and Systems, 2018, 19: 14-28. |
149 | ORÓ E, DEPOORTER V, PFLUGRADT N, et al. Overview of direct air free cooling and thermal energy storage potential energy savings in data centres[J]. Applied Thermal Engineering, 2015, 85: 100-110. |
150 | UK and China scientists develop world-first cold storage road/rail container[EB/OL]. [2021-09-21]. https://www.birmingham.ac.uk/news/latest/2018/12/scientists-develop-world-first-cold-storage-roadrail-container.aspx. |
151 | Passively cooled containers being delivered for integrated rail and road cold chain transportation following world's first commercial demonstration[EB/OL]. [2021-09-21]. https://www.birmingham.ac.uk/research/energy/news/2019/passively-cooled-containers-being-delivered-for-integrated-rail-and-road-cold-chain-transportation.aspx. |
152 | LIU M, SAMAN W, BRUNO F. Development of a novel refrigeration system for refrigerated trucks incorporating phase change material[J]. Applied Energy, 2012, 92: 336-342. |
153 | NIE B J, SHE X H, YU Q H, et al. Experimental study of charging a compact PCM energy storage device for transport application with dynamic exergy analysis[J]. Energy Conversion and Management, 2019, 196: 536-544. |
154 | NIE B J, SHE X H, DU Z, et al. System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications[J]. Applied Energy, 2019, 251: 113254. |
155 | JANKOWSKI N R, MCCLUSKEY F P. A review of phase change materials for vehicle component thermal buffering[J]. Applied Energy, 2014, 113: 1525-1561.http://www.sciencedirect.com/science/article/pii/S0306261913006612 |
156 | 向艳超, 邵兴国, 刘自军, 等. 嫦娥一号卫星热控系统及其特点[J]. 航天器工程, 2008, 17(5): 42-46. |
XIANG Y C, SHAO X G, LIU Z J, et al. Thermal control system and its characteristics of change[J]. Spacecraft Engineering, 2008, 17(5): 42-46. | |
157 | LEIMKUEHLER T, STEPHAN R, HANSEN S. Development, testing, and failure mechanisms of a replicative ice phase change material heat exchanger[C]// 40th International Conference on Environmental Systems. AIAA, 2010: 6138. |
158 | Spacesuit Materials Add Comfort to Undergarments-NASA Technical Reports Server (NTRS)[EB/OL]. [2022-07-13]. https://ntrs.nasa.gov/citations/20130009041 |
159 | N'TSOUKPOE K E, LIU H, LE PIERRÈS N, et al. A review on long-term sorption solar energy storage[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2385-2396. |
160 | CUYPERS R, MARAZ N, EVERSDIJK J, et al. Development of a seasonal thermochemical storage system[J]. Energy Procedia, 2012, 30: 207-214. |
161 | HONGOIS S, KUZNIK F, STEVENS P, et al. Development and characterisation of a new MgSO4-zeolite composite for long-term thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2011, 95(7): 1831-1837. |
162 | AHMAD A, DING Y L. A thermochemical energy storage based cooling and heating system: Modelling, experimental validation and lab-scale demonstration[J]. Energy Conversion and Management, 2021, 247: 114748.https://linkinghub.elsevier.com/retrieve/pii/S0196890421009249 |
163 | STITOU D, MAZET N, MAURAN S. Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning[J]. Energy, 2012, 41(1): 261-270. |
164 | AYDIN D, CASEY S P, CHEN X J, et al. Novel "open-sorption pipe" reactor for solar thermal energy storage[J]. Energy Conversion and Management, 2016, 121: 321-334. |
165 | BALES C, JAENIG D, GANTENBEIN P, et al. Laboratory prototypes of thermo-chemical and sorption storage units: Report B3 of subtask B[R]. Sweden: Dalarna University, 2007: 3-34. |
166 | LU Y Z, WANG R Z, ZHANG M, et al. Adsorption cold storage system with zeolite-water working pair used for locomotive air conditioning[J]. Energy Conversion and Management, 2003, 44(10): 1733-1743. |
167 | MAURAN S, LAHMIDI H, GOETZ V. Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60 kW·h by a solid/gas reaction[J]. Solar Energy, 2008, 82(7): 623-636. |
168 | ZONDAG H, KIKKERT B, SMEDING S, et al. Prototype thermochemical heat storage with open reactor system[J]. Applied Energy, 2013, 109: 360-365. |
169 | SMITH E M. Storage of electrical energy using supercritical liquid air[J]. Proceedings of the Institution of Mechanical Engineers, 1977, 191(1): 289-298. |
170 | TANAKA T, ISHIKAWA A, AOYAMA K, et al. Gas turbine inlet air cooling system with liquid air[C]//Proceedings of ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. ASME, 2014 |
171 | ARAKI H, NAKABARU M, CHINO K. Simulation of heat transfer in the cool storage unit of a liquid-air energy storage system[J]. Heat Transfer—Asian Research, 2002, 31(4): 284-296. |
172 | J-GLOBAL. Energy storage-a revolution in the air[J]. Modern Power Systems, 2013, 33(6): 32-33. |
173 | Highview Power launches world's first grid-scale liquid air energy storage plant[EB/OL]. [2022-07-13]. https://www.renewableenergymagazine.com/energy_saving/highview-power-launches-worlda-s-first-gridscale-20180605/ |
174 | Highview Power to develop multiple cryogenic energy storage facilities in the UK and to Build Europe's largest storage system[EB/OL]. [2022-07-13]. https://highviewpower.com/news_announcement/highview-power-to-develop-multiple-cryogenic-energy-storage-facilities-in-the-uk-and-to-build-europes-largest-storage-system/ |
175 | SHE X H, ZHANG T T, MENG Y Y, et al. Cryogenic energy storage[M]// CABEZA L F. Encyclopedia of Energy Storage: volume 2. Elsevier, 2022: 94-107. |
176 | MORGAN R, NELMES S, GIBSON E, et al. An analysis of a large-scale liquid air energy storage system[J]. Proceedings of the Institution of Civil Engineers-Energy, 2015, 168(2): 135-144. |
177 | SHE X H, LI Y L, PENG X D, et al. Theoretical analysis on performance enhancement of stand-alone liquid air energy storage from perspective of energy storage and heat transfer[J]. Energy Procedia, 2017, 142: 3498-3504. |
178 | SCIACOVELLI A, VECCHI A, DING Y. Liquid air energy storage (LAES) with packed bed cold thermal storage-From component to system level performance through dynamic modelling[J]. Applied Energy, 2017, 190: 84-98. |
179 | SHE X H, PENG X D, NIE B J, et al. Enhancement of round trip efficiency of liquid air energy storage through effective utilization of heat of compression[J]. Applied Energy, 2017, 206: 1632-1642. |
180 | HAMDY S, MOROSUK T, TSATSARONIS G. Cryogenics-based energy storage: Evaluation of cold exergy recovery cycles[J]. Energy, 2017, 138: 1069-1080. |
181 | LEGRAND M, RODRÍGUEZ-ANTÓN L M, MARTINEZ-AREVALO C, et al. Integration of liquid air energy storage into the Spanish power grid[J]. Energy, 2019, 187: 115965. |
182 | Delta Energy & Environment Ltd. Evidence Gathering: Thermal Energy Storage (TES) Technologies Evidence Gathering: Thermal Energy Storage (TES) Technologies Acknowledgements[R/OL]. Department of Business, Energy & Industrial Strategy, UK, 2016. [2021-08-31]. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/545249/DELTA_EE_ DECC_TES_Final__1_.pdf. |
183 | 2019 UK provisional greenhouse gas emissions national statistics 2019[R]. UK: Department for Business, Energy & Industrial Strategy, 2020.1-19. |
184 | TIAN Z Y, ZHANG S C, DENG J, et al. Large-scale solar district heating plants in Danish smart thermal grid: Developments and recent trends[J]. Energy Conversion and Management, 2019, 189: 67-80. |
185 | IPPC WGII AR5 chapter 10 [EB/OL]. [2021-08-31]. https://archive.ipcc.ch/pdf/assessment-report/ar5/wg2/drafts/WGIIAR5-Chap10_FOD.pdf |
186 | TAN P, LINDBERG P, EICHLER K, et al. Thermal energy storage using phase change materials: Techno-economic evaluation of a cold storage installation in an office building[J]. Applied Energy, 2020, 276: 115433. |
187 | Energy Storage Database | Energy Storage Systems[EB/OL]. [2021-08-31]. https://www.sandia.gov/ess-ssl/doe-global-energy-storage-database/. |
188 | SPITSEN P. Energy storage grand challenge roadmap[R]. U.S.: Department of Energy, 2020.11-155. |
189 | DOE. Launches design & construction of $75 million grid energy storage research facility | Department of Energy[EB/OL]. [2021-08-31]. https://www.energy.gov/articles/doe-launches-design-construction-75-million-grid-energy-storage-research-facility. |
190 | 投资7500万美元!美欲加速熔融硅储热等低成本长时储能技术研发国际太阳能光伏网[EB/OL]. [2021-08-31]. https://solar.in-en.com/html/solar-2373894.shtml. |
191 | JENSEN M V, FROM N, SORENSEN P A. Large scale solar thermal plants with long term heat storages. Examples from Marstal, Braedstrup and Dronninglund, DK [C]// Solar District Heating Conference. Toulouse. 2015 |
192 | SCHMIDT T, MANGOLD D, MÜLLER-STEINHAGEN H. Central solar heating plants with seasonal storage in Germany[J]. Solar Energy. 76(1-3): 165-174. |
193 | PLANENERGI J V. Seasonal pit heat storages-Guidelines for materials & construction[R]. International Energy Agency, 2020. 1-24. https://task55.iea-shc.org/Data/Sites/1/publications/IEA-SHC-T55-C-D.2-FACT-SHEET-Guidelines-seasonal-storages.pdf |
194 | JENSEN M V. Two approaches of seasonal heat storing: Pit heat storage and borehole thermal energy storage[C]. Solar District Heating Conference. Malmo. 2013. |
195 | SIBBITT B, MCCLENAHAN D. Seasonal Borehole Thermal Energy Storage-Guidelines for materials & construction[R]. International Energy Agency, 2015: 1-2. http://task45.iea-shc.org/data/sites/1/publications/IEA-SHC-T45.B.3.1-INFO-Seasonal%20storages-Borehole-Guidelines.pdf |
196 | 岳芬. 储热技术应用现状与发展趋势 [EB/OL]. [2021-08-31]. https://chuneng.bjx.com.cn/news/20200511/1070645.shtml. |
197 | Solares Wärmenetz mit Langzeitwärmespeicher und hohensolaren Deckungsanteilen für Wohngebiete und Quartiere [EB/OL] [2021-08-31]. https://www.solar-district-heating.eu/wp-content/uploads/2018/05/20150210_SolnetBWI_Anlagensteckbrief_Crailsheim.pdf l. |
[1] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[2] | Na YANG, Chengcheng WANG, Hui YANG, Zhihao HU, Lige TONG, Zhongbo LI, Li WANG, Yulong DING, Na LI. Non-isothermal kinetics calculation and heat storage performance analysis of silica gel based on thermochemical reaction [J]. Energy Storage Science and Technology, 2022, 11(5): 1331-1338. |
[3] | HAO Maosen, LIU Hongzhi, WANG Wantong, LYU Jing. Research progress of thermochemical heat storage materials of hydrated salts [J]. Energy Storage Science and Technology, 2020, 9(3): 791-796. |
[4] | LING Haoshu, HE Jingdong, XU Yujie, WANG Liang, CHEN Haisheng. Status and prospect of thermal energy storage technology for clean heating [J]. Energy Storage Science and Technology, 2020, 9(3): 861-868. |
[5] | XING Zuoxia, ZHAO Haichuan, MA Shiping, DAI Junwen, LIU Yuting, SUN Zhenting. Study on key parameters design and economic evaluation of the electric heating and solid sensible heat thermal storage device [J]. Energy Storage Science and Technology, 2019, 8(6): 1211-1216. |
[6] | BAI Wengang, ZHANG Chun, ZHANG Lei, YANG Yu, ZHANG Yifan, LI Hongzhi. Thermodynamic analysis of novel hybrid liquid air energy storage system combined with ORC [J]. Energy Storage Science and Technology, 2019, 8(5): 880-885. |
[7] | DENG Chang, PAN Zhihao, YAN Jun, ZHAO Changying. Numerical study on exothermic process of a CaO-Ca(OH)2 thermochemical heat storage system [J]. Energy Storage Science and Technology, 2018, 7(2): 248-254. |
[8] | JIN Yi1, WANG Le1, YANG Cenyu1, SONG Jie1, XU Chao2. Cycle performance of a packed bed based cold storage device [J]. Energy Storage Science and Technology, 2017, 6(4): 708-718. |
[9] | HAN Guangshun, WANG Peilun, JIN Yi, HUANG Yun, DING Hongsheng, DING Yulong. Numerical simulations on performance enhancement of a cross-flow latent thermal energy storage heat exchanger [J]. Energy Storage Science and Technology, 2015, 4(2): 183-188. |
[10] | LIU Yongkun, TAO Yubing, TANG Zongbin. Numerical study on performance enhancement of latent heat storage unit [J]. Energy Storage Science and Technology, 2014, 3(3): 197-202. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||