Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (11): 3521-3533.doi: 10.19799/j.cnki.2095-4239.2022.0243
• Energy Storage Materials and Devices • Previous Articles Next Articles
Kang MA1,3(), Zhihao GAO2,3, Lin LUO2,3, Xin SONG2,3, Zuoqiang DAI2,3, Tian HE2,3, Jianmin ZHANG2,3()
Received:
2022-05-07
Revised:
2022-05-26
Online:
2022-11-05
Published:
2022-11-09
Contact:
Jianmin ZHANG
E-mail:1205837156@qq.com;zhangjm@qdu.edu.cn
CLC Number:
Kang MA, Zhihao GAO, Lin LUO, Xin SONG, Zuoqiang DAI, Tian HE, Jianmin ZHANG. Research progress on lithium-sulfur battery separators for different strategies to inhibit the “shuttle effect”[J]. Energy Storage Science and Technology, 2022, 11(11): 3521-3533.
Table 1
Electrochemical properties of polypropylene based modified separator with physical limitation"
隔膜涂层材料 | 硫负载量/(mg/cm2) | 隔膜涂层负载量/(mg/cm2) | 倍率性能 | N次循环数据(mAh/g)/循环周期/ 电流倍率 | 容量衰减率/% | 参考文献 |
---|---|---|---|---|---|---|
Nafion | 0.15 | 0.7 | 450/1C | 628/500/1 | 0.08 | [ |
Nafion/Super P | 0.15 | 0.15 | 302/1C | 430/250/0.5 | 0.22 | [ |
Nafion/GO | 0.053 | 0.053 | 570/2C | 676/200/0.5 | 0.18 | [ |
MWCNT/SPANI | 5 | 0.56 | 358/0.6C | 913/100/0.06 | 0.18 | [ |
rGO@SL | 1.5 | 0.2 | 707/2C | 523/1000/2 | 0.026 | [ |
S62--VPP | 1.0 | — | 415/5C | 840/2000/3 | 0.012 | [ |
MPC | 1.55 | 0.5 | — | 723/500/0.5 | 0.081 | [ |
MWCNTs | 2 | 0.17 | — | 621/300/1 | 0.14 | [ |
ACNF | 2.1 | 0.35 | — | 819/200/0.5 | 0.13 | [ |
CGF | 5.3 | 0.3 | 1000/2C | 800/250/0.5 | 0.11 | [ |
CF | 3.1 | 0.53 | 539/1.3C | —/800/0.5 | 0.035 | [ |
Table 2
Electrochemical properties of chemically restricted polypropylene based modified separator"
隔膜涂层材料 | 硫负载量/(mg/cm2) | 隔膜涂层负载量/(mg/cm2) | 倍率性能 | N次循环数据(mAh/g)/循环次数/ 电流倍率 | 容量衰减率/% | 参考文献 |
---|---|---|---|---|---|---|
N,P-HC | 2.0 | 0.36 | 674/1 C | 638/900/0.2 | 0.08 | [ |
N,O-CBBC | 2.0 | 0.95 | 913/1 C | 656/600/0.5 | 0.22 | [ |
CoN-CNT/HPC | 1.0 | 0.3 | 782/2 C | 678/500/2 | 0.18 | [ |
Al2O3 | 1.6 | — | 452/1 C | 593/50/0.2 | 0.18 | [ |
CNT/Al2O3 | 1.2 | — | 812/1 C | 760/100/0.2 | 0.026 | [ |
Nb2O5-CNT | 1.5 | 0.38 | 507/5 C | 992/100/0.2 | 0.012 | [ |
MnO2 | 1.2 | — | 494/2 C | 494/500/0.5 | 0.081 | [ |
rGO@MoS2 | 2.0 | 0.24 | 615/1 C | 368/500/1 | 0.116 | [ |
CNTs /MoS2 | — | — | 600/2 C | 636/500/1 | 0.01 | [ |
(M-P/P)10 | 1.2 | 0.1 | 766/3 C | 423/2000/1 | 0.13 | [ |
LDH@NG | 1.2 | 0.3 | 709/2 C | 337/1000/2 | 0.11 | [ |
ZnS-SnS@NC | 2.2 | — | 661/10 C | 632/2000/4 | 0.013 | [ |
TiB2 | 1.5 | 0.88 | 700/5 C | 850/300/0.5 | 0.05 | [ |
ZnS@WCF | 1.0 | — | 806/2 C | 685/600/1 | 0.045 | [ |
1 | SONG M K, CAIRNS E J, ZHANG Y G. Lithium/sulfur batteries with high specific energy: Old challenges and new opportunities[J]. Nanoscale, 2013, 5(6): 2186-2204. |
2 | LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
3 | ZHAO Q, HAO Z D, TANG J D, et al. Cation-selective separators for addressing the lithium-sulfur battery challenges[J]. ChemSusChem, 2021, 14(3): 792-807. |
4 | ZHENG D, ZHANG X R, WANG J K, et al. Reduction mechanism of sulfur in lithium-sulfur battery: From elemental sulfur to polysulfide[J]. Journal of Power Sources, 2016, 301: 312-316. |
5 | MANTHIRAM A, FU Y Z, SU Y S. Challenges and prospects of lithium-sulfur batteries[J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134. |
6 | DENG N P, KANG W M, LIU Y B, et al. A review on separators for lithiumsulfur battery: Progress and prospects[J]. Journal of Power Sources, 2016, 331: 132-155. |
7 | 黄佳琦, 孙滢智, 王云飞, 等. 锂硫电池先进功能隔膜的研究进展[J]. 化学学报, 2017, 75(2): 173-188. |
HUANG J Q,SUN Y Z,WANG Y F, et al. Review on advanced functional separators for lithium-sulfur batteries[J]. Acta Chimica Sinica, 2017, 75(2): 173-188. | |
8 | HUANG J Q, ZHANG Q, WEI F. Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects[J]. Energy Storage Materials, 2015, 1: 127-145. |
9 | JEONG Y C, KIM J H, NAM S, et al. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries[J]. Advanced Functional Materials, 2018, 28(38): doi: 10.1002/adfm.201707411. |
10 | 曹连胜, 赵超, 金欣, 等. 基于离子选择性迁移策略的动力/储能电池隔膜的研究进展[J]. 复合材料学报, 2021, 38(7): 2025-2037. |
CAO L S, ZHAO C, JIN X, et al. Research progress of power/energy storage battery separator based on selective ion migration strategy[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2025-2037. | |
11 | HUANG J Q, ZHANG Q, PENG H J, et al. Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries[J]. Energy Environ Sci, 2014, 7(1): 347-353. |
12 | HAO Z X, YUAN L X, LI Z, et al. High performance lithium-sulfur batteries with a facile and effective dual functional separator[J]. Electrochimica Acta, 2016, 200: 197-203. |
13 | ZHUANG T Z, HUANG J Q, PENG H J, et al. Rational integration of polypropylene/graphene oxide/nafion as ternary-layered separator to retard the shuttle of polysulfides for lithium-sulfur batteries[J]. Small, 2016, 12(3): 381-389. |
14 | SHI L, ZENG F L, CHENG X, et al. Enhanced performance of lithium-sulfur batteries with high sulfur loading utilizing ion selective MWCNT/SPANI modified separator[J]. Chemical Engineering Journal, 2018, 334: 305-312. |
15 | ZHOU Y C, ZHANG Y Y, LI X D. Upcycling of paper waste for high-performance lithium-sulfur batteries[J]. Materials Today Energy, 2021, 19: doi: 10.1016/j.mtener.2020.100591. |
16 | LEI T Y, CHEN W, LV W Q, et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries[J]. Joule, 2018, 2(10): 2091-2104. |
17 | HE Y B, QIAO Y, CHANG Z, et al. Developing A "polysulfide-phobic" strategy to restrain shuttle effect in lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2019, 58(34): 11774-11778. |
18 | LI C Y, WARD A L, DORIS S E, et al. Polysulfide-blocking microporous polymer membrane tailored for hybrid Li-sulfur flow batteries[J]. Nano Letters, 2015, 15(9): 5724-5729. |
19 | BALACH J, JAUMANN T, KLOSE M, et al. Functional mesoporous carbon-coated separator for long-life, high-energy lithium-sulfur batteries[J]. Advanced Functional Materials, 2015, 25(33): 5285-5291. |
20 | CHUNG S H, MANTHIRAM A. High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator[J]. The Journal of Physical Chemistry Letters, 2014, 5(11): 1978-1983. |
21 | CHUNG S H, HAN P, SINGHAL R, et al. Electrochemically stable rechargeable lithium-sulfur batteries with a microporous carbon nanofiber filter for polysulfide[J]. Advanced Energy Materials, 2015, 5(18): doi: 10.1002/aenm.201500738. |
22 | CHANG C H, CHUNG S H, MANTHIRAM A. Ultra-lightweight PANiNF/MWCNT-functionalized separators with synergistic suppression of polysulfide migration for Li-S batteries with pure sulfur cathodes[J]. Journal of Materials Chemistry A, 2015, 3(37): 18829-18834. |
23 | PENG H J, WANG D W, HUANG J Q, et al. Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium-sulfur batteries[J]. Advanced Science, 2016, 3(1): doi: 10.1002/advs.201500268. |
24 | ZHU J X, YANG D, YIN Z Y, et al. Graphene and graphene-based materials for energy storage applications[J]. Small, 2014, 10(17): 3480-3498. |
25 | BAI S Y, LIU X Z, ZHU K, et al. Metal-organic framework-based separator for lithium-sulfur batteries[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.94. |
26 | SEH Z W, ZHANG Q F, LI W Y, et al. Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder[J]. Chemical Science, 2013, 4(9): 3673. |
27 | ZHENG G Y, ZHANG Q F, CHA J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Letters, 2013, 13(3): 1265-1270. |
28 | LIU J H, LI W F, DUAN L M, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano Letters, 2015, 15(8): 5137-5142. |
29 | ZENG P, HUANG L W, ZHANG X L, et al. Long-life and high-areal-capacity lithium-sulfur batteries realized by a honeycomb-like N, P dual-doped carbon modified separator[J]. Chemical Engineering Journal, 2018, 349: 327-337. |
30 | DENG C, WANG Z W, WANG S P, et al. Inhibition of polysulfide diffusion in lithium-sulfur batteries: Mechanism and improvement strategies[J]. Journal of Materials Chemistry A, 2019, 7(20): 12381-12413. |
31 | TIKEKAR M D, CHOUDHURY S, TU Z Y, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.114. |
32 | LI Q, LIU Y P, YANG L W, et al. N, O co-doped chlorella-based biomass carbon modified separator for lithium-sulfur battery with high capacity and long cycle performance[J]. Journal of Colloid and Interface Science, 2021, 585: 43-50. |
33 | LIU L, YANG F, GE L, et al. Facile and low-cost preparation of Co and N co-doped hierarchical porous carbon as a functional separator for Li-S batteries[J]. Electrochimica Acta, 2022, 401: doi: 10.1016/j.electacta.2021.139380. |
34 | HOU T Z, CHEN X, PENG H J, et al. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries[J]. Small, 2016, 12(24): 3283-3291. |
35 | HAN Z Y, ZHAO S Y, XIAO J W, et al. Engineering d-p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries[J]. Advanced Materials, 2021, 33(44): doi: 10.1002/adma.202105947. |
36 | ZHANG Z Y, LAI Y Q, ZHANG Z A, et al. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries[J]. Electrochimica Acta, 2014, 129: 55-61. |
37 | CHEN X, HUANG Y D, LI J, et al. Bifunctional separator with sandwich structure for high-performance lithium-sulfur batteries[J]. Journal of Colloid and Interface Science, 2020, 559: 13-20. |
38 | LIM W G, KIM S, JO C, et al. A comprehensive review of materials with catalytic effects in Li-S batteries: Enhanced redox kinetics[J]. Angewandte Chemie, 2019, 131(52): 18920-18931. |
39 | WANG X, YANG L W, WANG Y, et al. Novel functional separator with self-assembled MnO2 layer via a simple and fast method in lithium-sulfur battery[J]. Journal of Colloid and Interface Science, 2022, 606: 666-676. |
40 | LIU Y J, CHEN M Q, SU Z, et al. Direct trapping and rapid conversing of polysulfides via a multifunctional Nb2O5-CNT catalytic layer for high performance lithium-sulfur batteries[J]. Carbon, 2021, 172: 260-271. |
41 | TAN L, LI X H, WANG Z X, et al. Lightweight reduced graphene Oxide@MoS2 interlayer as polysulfide barrier for high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3707-3713. |
42 | 顾品超, 张楷亮, 冯玉林, 等. 层状二硫化钼研究进展[J]. 物理学报, 2016, 65(1): 32-40. |
GU P C, ZHANG K L, FENG Y L, et al. Recent progress of two-dimensional layered molybdenum disulfide[J]. Acta Physica Sinica, 2016, 65(1): 32-40. | |
43 | JEONG Y C, KIM J H, KWON S H, et al. Rational design of exfoliated 1T MoS2@CNT-based bifunctional separators for lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(45): 23909-23918. |
44 | WU J Y, ZENG H X, LI X W, et al. Ultralight layer-by-layer self-assembled MoS2-polymer modified separator for simultaneously trapping polysulfides and suppressing lithium dendrites[J]. Advanced Energy Materials, 2018, 8(35): doi: 10.1002/aenm.201802430. |
45 | YANG J L, ZHAO S X, LU Y M, et al. ZnS spheres wrapped by an ultrathin wrinkled carbon film as a multifunctional interlayer for long-life Li-S batteries[J]. Journal of Materials Chemistry A, 2020, 8(1): 231-241. |
46 | YAO W Q, ZHENG W Z, XU J, et al. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries[J]. ACS Nano, 2021, 15(4): 7114-7130. |
47 | PENG H J, ZHANG Z W, HUANG J Q, et al. A cooperative interface for highly efficient lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(43): 9551-9558. |
48 | JIN L M, NI J, SHEN C, et al. Metallically conductive TiB2 as a multi-functional separator modifier for improved lithium sulfur batteries[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2019.227336. |
49 | WANG Z H, LEE Y H, KIM S W, et al. Why cellulose-based electrochemical energy storage devices? [J]. Advanced Materials, 2021, 33(28): doi: 10.1002/adma.202000892. |
50 | MUSINO D, RIVARD C, LANDROT G, et al. Hydroxyl groups on cellulose nanocrystal surfaces form nucleation points for silver nanoparticles of varying shapes and sizes[J]. Journal of Colloid and Interface Science, 2021, 584: 360-371. |
51 | YU B C, PARK K, JANG J H, et al. Cellulose-based porous membrane for suppressing Li dendrite formation in lithium-sulfur battery[J]. ACS Energy Letters, 2016, 1(3): 633-637. |
52 | LI W, WANG S, FAN Z, et al. Functionalized bacterial cellulose as a separator to address polysulfides shuttling in lithium-sulfur batteries[J]. Materials Today Energy, 2021, 21: doi: 10.1016/j.mtener.2021.100813. |
53 | WU S L, SHI J Y, NIE X L, et al. Multi-duties for one post: Biodegradable bacterial cellulose-based separator for lithium sulfur batteries[J]. Carbohydrate Polymers, 2022, 285: doi: 10.1016/j.carbpol.2022.119201. |
54 | WU S L, SHI J Y, NIE X L, et al. Microporous cyclodextrin film with funnel-type channel polymerized on electrospun cellulose acetate membrane as separators for strong trapping polysulfides and boosting charging in lithium-sulfur batteries[J]. Energy & Environmental Materials, 2022: doi: 10.1002/eem2.12319. |
55 | LI J X, DAI L Q, WANG Z F, et al. Cellulose nanofiber separator for suppressing shuttle effect and Li dendrite formation in lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2022, 67: 736-744. |
[1] | Binwei ZHANG, Zidong WEI, Shigang SUN. The recent progress and future opportunities of Na2S cathode for room temperature sodium sulfur batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2811-2824. |
[2] | Xiaofei WANG, Dawei LAN, Daoming ZHANG, Haoliang XUE, Sifei ZHOU, Chuang LIU, Jun LI, Zhendong WANG. High-performance lithium-sulfur batteries enabled by a separator modified by lithium-doped zeolite [J]. Energy Storage Science and Technology, 2022, 11(11): 3447-3454. |
[3] | YUAN Huadong, LUO Jianmin, JIN Chengbin, SHENG Ouwei, HUANG Hui, ZHANG Wenkui, TAO Xinyong . Carbon materials with modified surfaces and interfaces for the high performance cathode of lithium sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 380-410. |
[4] | LLZO-based hybrid electrolyte to suppress the shuttle effect of Li-S battery. LLZO-based hybrid electrolyte to suppress the shuttle effect of Li-S battery [J]. Energy Storage Science and Technology, 2016, 5(5): 719-724. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||