Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (9): 2811-2824.doi: 10.19799/j.cnki.2095-4239.2022.0371
• Special Issue for the 10th Anniversary • Previous Articles Next Articles
Binwei ZHANG1,2(), Zidong WEI1,2(), Shigang SUN2,3()
Received:
2022-07-01
Revised:
2022-07-15
Online:
2022-09-05
Published:
2022-08-30
Contact:
Zidong WEI, Shigang SUN
E-mail:binwei@cqu.edu.cn;zdwei@cqu.edu.cn;sgsun@xmu.edu.cn
CLC Number:
Binwei ZHANG, Zidong WEI, Shigang SUN. The recent progress and future opportunities of Na2S cathode for room temperature sodium sulfur batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2811-2824.
Fig. 9
(a) Galvanostatic discharge curve, corresponding in situ synchrotron XRD of S/Mo5N6 cathode, (b)-(g) Potentiostatic discharge curves and corresponding with SEM image for electrodeposition rate measurements on the MoN, Mo2N, and Mo5N6, (h) Gibbs free energy diagram of conversion from Na2S2 to NaS2*, (i) Relationship between computed ΔGdiss-1 or ΔGB values. ΔGdiss-1 means the dissociation free energy of Na2S2, ΔGdiss-2 is the formation free energy of NaS*, and ΔGB is NaS* formation free energy barrier[47]"
1 | TIAN Y S, ZENG G B, RUTT A, et al. Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid decarbonization[J]. Chemical Reviews, 2021, 121(3): 1623-1669. |
2 | YE Y S, CHOU L Y, LIU Y Y, et al. Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries[J]. Nature Energy, 2020, 5(10): 786-793. |
3 | ZHANG L, LIU X X, DOU Y H, et al. Mass production and pore size control of holey carbon microcages[J]. Angewandte Chemie International Edition, 2017, 56(44): 13790-13794. |
4 | ZHAO L F, HU Z, LAI W H, et al. Hard carbon anodes: Fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts[J]. Advanced Energy Materials, 2021, 11(1): 2002704. |
5 | REN L, ZHANG B W. Room temperature liquid metals for flexible alkali metal-chalcogen batteries[J]. Exploration, 2022: 20210182. |
6 | WEI D, SHEN W, XU T, et al. Ultra-flexible and foldable gel polymer lithium-ion batteries enabling scalable production[J]. Materials Today Energy, 2022, 23: 100889. |
7 | 方铮, 曹余良, 胡勇胜, 等. 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5(2): 149-158. |
FANG Z, CAO Y L, HU Y S, et al. Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 149-158. | |
8 | 戚兴国, 王伟刚, 胡勇胜, 等. 钠离子电池层状氧化物正极材料的表面修饰研究[J]. 储能科学与技术, 2020, 9(5): 1396-1401. |
QI X G, WANG W G, HU Y S, et al. Surface modification research of layered oxide materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1396-1401. | |
9 | LI H P, GUO C, ZHANG T S, et al. Hierarchical confinement effect with zincophilic and spatial traps stabilized Zn-based aqueous battery[J]. Nano Letters, 2022, 22(10): 4223-4231. |
10 | LIANG Y, DONG H, AURBACH D, et al. Current status and future directions of multivalent metal-ion batteries[J]. Nature Energy, 2020, 5: 646-656. |
11 | ZHANG L, DOU Y H, GUO H P, et al. A facile way to fabricate double-shell pomegranate-like porous carbon microspheres for high-performance Li-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(24): 12073-12079. |
12 | ZHANG B W, SHENG T, WANG Y X, et al. Long-life room-temperature sodium-sulfur batteries by virtue of transition-metal-nanocluster-sulfur interactions[J]. Angewandte Chemie International Edition, 2019, 58(5): 1484-1488. |
13 | WU C, LEI Y J, SIMONELLI L, et al. Continuous carbon channels enable full Na-ion accessibility for superior room-temperature Na-S batteries[J]. Advanced Materials, 2022, 34(8): 2108363. |
14 | 胡英瑛, 吴相伟, 温兆银. 储能钠硫电池的工程化研究进展与展望——提高电池安全性的材料与结构设计[J]. 储能科学与技术, 2021, 10(3): 781-799. |
HU Y Y, WU X W, WEN Z Y. Progress and prospect of engineering research on energy storage sodium sulfur battery—Material and structure design for improving battery safety[J]. Energy Storage Science and Technology, 2021, 10(3): 781-799. | |
15 | ZHANG J, LI J Y, WANG W P, et al. Microemulsion assisted assembly of 3D porous S/graphene@g-C3N4 hybrid sponge as free-standing cathodes for high energy density Li-S batteries[J]. Advanced Energy Materials, 2018, 8(14): 1702839. |
16 | DONG Q, SHEN R P, LI C P, et al. Construction of soft base tongs on separator to grasp polysulfides from shuttling in lithium-sulfur batteries[J]. Small, 2018, 14(52): 1804277. |
17 | WEN Z Y, HU Y Y, WU X W, et al. Main challenges for high performance NAS battery: Materials and interfaces[J]. Advanced Functional Materials, 2013, 23(8): 1005-1018. |
18 | Ford gives Na-S battery details[N/J]. Chemical & Engineering News Archive, 1966, 44(42): 32-33. |
19 | WEN Z Y, CAO J D, GU Z H, et al. Research on sodium sulfur battery for energy storage[J]. Solid State Ionics, 2008, 179(27/28/29/30/31/32): 1697-1701. |
20 | WEN Z Y, GU Z H, XU X H, et al. Research activities in Shanghai Institute of Ceramics, Chinese Academy of Sciences on the solid electrolytes for sodium sulfur batteries[J]. Journal of Power Sources, 2008, 184(2): 641-645. |
21 | ZHANG B W, LIU Y D, WANG Y X, et al. In situ grown S nanosheets on Cu foam: An ultrahigh electroactive cathode for room-temperature Na-S batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(29): 24446-24450. |
22 | YANG H L, ZHOU S, ZHANG B W, et al. Architecting freestanding sulfur cathodes for superior room-temperature Na-S batteries[J]. Advanced Functional Materials, 2021, 31(32): 2102280. |
23 | ZHOU X F, YU Z X, YAO Y, et al. A high-efficiency Mo2C electrocatalyst promoting the polysulfide redox kinetics for Na-S batteries[J]. Advanced Materials, 2022, 34(14): 2200479. |
24 | XIN S, YIN Y X, GUO Y G, et al. A high-energy room-temperature sodium-sulfur battery[J]. Advanced Materials, 2014, 26(8): 1261-1265. |
25 | WANG L F, WANG H Y, ZHANG S P, et al. Manipulating the electronic structure of nickel via alloying with iron: Toward high-kinetics sulfur cathode for Na-S batteries[J]. ACS Nano, 2021, 15(9): 15218-15228. |
26 | PENG L L, WEI Z Y, WAN C Z, et al. A fundamental look at electrocatalytic sulfur reduction reaction[J]. Nature Catalysis, 2020, 3(9): 762-770. |
27 | CHEN B, ZHONG X W, ZHOU G M, et al. Graphene-supported atomically dispersed metals as bifunctional catalysts for next-generation batteries based on conversion reactions[J]. Advanced Materials, 2022, 34(5): 2105812. |
28 | ZHANG X Q, JIN Q, NAN Y L, et al. Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2021, 60(28): 15503-15509. |
29 | ZHANG S P, YAO Y, YU Y. Frontiers for room-temperature sodium-sulfur batteries[J]. ACS Energy Letters, 2021, 6(2): 529-536. |
30 | ZHAO M, PENG H J, ZHANG Z W, et al. Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal[J]. Angewandte Chemie International Edition, 2019, 58(12): 3779-3783. |
31 | WANG N N, WANG Y X, BAI Z C, et al. High-performance room-temperature sodium-sulfur battery enabled by electrocatalytic sodium polysulfides full conversion[J]. Energy & Environmental Science, 2020, 13(2): 562-570. |
32 | XIA X M, DU C F, ZHONG S E, et al. Homogeneous Na deposition enabling high-energy Na-metal batteries[J]. Advanced Functional Materials, 2022, 32(10): 2110280. |
33 | ZHAO R Z, ELZATAHRY A, CHAO D L, et al. Making MXenes more energetic in aqueous battery[J]. Matter, 2022, 5(1): 8-10. |
34 | EL-SHINAWI H, CUSSEN E J, CORR S A. Selective and facile synthesis of sodium sulfide and sodium disulfide polymorphs[J]. Inorganic Chemistry, 2018, 57(13): 7499-7502. |
35 | CHUNG S H, MANTHIRAM A. Current status and future prospects of metal-sulfur batteries[J]. Advanced Materials, 2019, 31(27): 1901125. |
36 | ZHOU D, CHEN Y, LI B H, et al. A stable quasi-solid-state sodium-sulfur battery[J]. Angewandte Chemie International Edition, 2018, 57(32): 10168-10172. |
37 | YU X W, MANTHIRAM A. Na2S-carbon nanotube fabric electrodes for room-temperature sodium-sulfur batteries[J]. Chemistry-A European Journal, 2015, 21(11): 4233-4237. |
38 | LI M, LU J, SHI J Y, et al. In situ localized polysulfide injector for the activation of bulk lithium sulfide[J]. Journal of the American Chemical Society, 2021, 143(5): 2185-2189. |
39 | JIANG J C, FAN Q N, ZHENG Z, et al. Nanostructured CoS2-decorated hollow carbon spheres: A performance booster for Li-ion/sulfur batteries[J]. ACS Applied Energy Materials, 2020, 3(7): 6447-6459. |
40 | BLOI L M, PAMPEL J, DÖRFLER S, et al. Sodium sulfide cathodes superseding hard carbon pre-sodiation for the production and operation of sodium-sulfur batteries at room temperature[J]. Advanced Energy Materials, 2020, 10(7): 1903245. |
41 | WANG C L, WANG H, HU X F, et al. Frogspawn-coral-like hollow sodium sulfide nanostructured cathode for high-rate performance sodium-sulfur batteries[J]. Advanced Energy Materials, 2019, 9(9): 1803843. |
42 | FAN X L, YUE J, HAN F D, et al. High-performance all-solid-state Na-S battery enabled by casting-annealing technology[J]. ACS Nano, 2018, 12(4): 3360-3368. |
43 | YUE J, HAN F D, FAN X L, et al. High-performance all-inorganic solid-state sodium-sulfur battery[J]. ACS Nano, 2017, 11(5): 4885-4891. |
44 | ZHANG B W, SHENG T, LIU Y D, et al. Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries[J]. Nature Communications, 2018, 9: 4082. |
45 | ZHANG B W, LI S N, YANG H L, et al. Atomically dispersed S-Fe-N4 for fast kinetics sodium-sulfur batteries via a dual function mechanism[J]. Cell Reports Physical Science, 2021, 2(8): 100531. |
46 | CHEN B, WANG T S, ZHAO S Y, et al. Efficient reversible conversion between MoS2 and Mo/Na2S enabled by graphene-supported single atom catalysts[J]. Advanced Materials, 2021, 33(12): 2007090. |
47 | YE C, JIN H Y, SHAN J Q, et al. A Mo5N6 electrocatalyst for efficient Na2S electrodeposition in room-temperature sodium-sulfur batteries[J]. Nature Communications, 2021, 12: 7195. |
48 | YU X W, MANTHIRAM A. Performance enhancement and mechanistic studies of room-temperature sodium-sulfur batteries with a carbon-coated functional nafion separator and a Na2S/activated carbon nanofiber cathode[J]. Chemistry of Materials, 2016, 28(3): 896-905. |
49 | ZHOU G M, CHEN H, CUI Y. Formulating energy density for designing practical lithium-sulfur batteries[J]. Nature Energy, 2022, 7(4): 312-319. |
50 | SUN L P, LI H, ZHAO M L, et al. High-performance lithium-sulfur batteries based on self-supporting graphene/carbon nanotube foam@sulfur composite cathode and quasi-solid-state polymer electrolyte[J]. Chemical Engineering Journal, 2018, 332: 8-15. |
51 | YUE J P, YAN M, YIN Y X, et al. Progress of the interface design in all-solid-state Li-S batteries[J]. Advanced Functional Materials, 2018, 28(38): 1707533. |
52 | CAO Y, ZUO P J, LOU S F, et al. A quasi-solid-state Li-S battery with high energy density, superior stability and safety[J]. Journal of Materials Chemistry A, 2019, 7(11): 6533-6542. |
53 | YANG X F, LUO J, SUN X L. Towards high-performance solid-state Li-S batteries: From fundamental understanding to engineering design[J]. Chemical Society Reviews, 2020, 49(7): 2140-2195. |
54 | LIN Y L, HUANG S, ZHONG L, et al. Organic liquid electrolytes in Li-S batteries: Actualities and perspectives[J]. Energy Storage Materials, 2021, 34: 128-147. |
55 | ZHANG B W, WANG Y X, CHOU S L, et al. Fabrication of superior single-atom catalysts toward diverse electrochemical reactions[J]. Small Methods, 2019, 3(9): 1800497. |
56 | HE J R, BHARGAV A, MANTHIRAM A. High-performance anode-free Li-S batteries with an integrated Li2S-electrocatalyst cathode[J]. ACS Energy Letters, 2022, 7(2): 583-590. |
57 | LI M, WANG C S, CHEN Z W, et al. New concepts in electrolytes[J]. Chemical Reviews, 2020, 120(14): 6783-6819. |
58 | CHEN J, FAN X L, LI Q, et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries[J]. Nature Energy, 2020, 5(5): 386-397. |
59 | WANG Y Z, ZHOU D, PALOMARES V, et al. Revitalising sodium-sulfur batteries for non-high-temperature operation: A crucial review[J]. Energy & Environmental Science, 2020, 13(11): 3848-3879. |
60 | NANDA S, MANTHIRAM A. Lithium degradation in lithium-sulfur batteries: Insights into inventory depletion and interphasial evolution with cycling[J]. Energy & Environmental Science, 2020, 13(8): 2501-2514. |
61 | WANG Y X, ZHANG B W, LAI W H, et al. Room-temperature sodium-sulfur batteries: A comprehensive review on research progress and cell chemistry[J]. Advanced Energy Materials, 2017, 7(24): 1602829. |
62 | LIU H W, PEI W, LAI W H, et al. Electrocatalyzing S cathodes via multisulfiphilic sites for superior room-temperature sodium-sulfur batteries[J]. ACS Nano, 2020, 14(6): 7259-7268. |
63 | ZHAO C, XU G L, YU Z, et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites[J]. Nature Nanotechnology, 2021, 16(2): 166-173. |
64 | YE C, JIAO Y, CHAO D L, et al. Electron-state confinement of polysulfides for highly stable sodium-sulfur batteries[J]. Advanced Materials, 2020, 32(12): 1907557. |
65 | YANG H L, ZHANG B W, KONSTANTINOV K, et al. Progress and challenges for all-solid-state sodium batteries[J]. Advanced Energy and Sustainability Research, 2021, 2(2): 2000057. |
66 | YANG N, PENG L L, LI L, et al. Theoretically probing the possible degradation mechanisms of an FeNC catalyst during the oxygen reduction reaction[J]. Chemical Science, 2021, 12(37): 12476-12484. |
67 | ZHENG X Q, ZHANG L, HUANG J W, et al. Boosting hydrogen evolution reaction of nickel sulfides by introducing nonmetallic dopants[J]. The Journal of Physical Chemistry C, 2020, 124(44): 24223-24231. |
68 | XU R, TANG H A, ZHOU Y Y, et al. Enhanced catalysis of radical-to-polysulfide interconversion via increased sulfur vacancies in lithium-sulfur batteries[J]. Chemical Science, 2022, 13(21): 6224-6232. |
[1] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[2] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[3] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[4] | Yue SU, Xuhua LIU, Fanglei ZENG, Yurong REN, Bencai LIN. Preparation and properties of polyvinylidene fluoride/polyvinylidene fluoride sulfonate lithium/lithium salt composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(6): 2069-2076. |
[5] | Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. |
[6] | Bohui LU, Zhicheng SHI, Yongxue ZHANG, Hongyu ZHAO, Zixi WANG. Investigation of the charging and discharging performance of paraffin/nano-Fe3O4 composite phase change material in a shell and tube thermal energy storage unit [J]. Energy Storage Science and Technology, 2021, 10(5): 1709-1719. |
[7] | Yongli HENG, Zhenyi GU, Jinzhi GUO, Xinglong WU. Na3V2(PO4)3@C cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 938-944. |
[8] | Yanfang ZHAI, Guanming YANG, Wangshu HOU, Jianyao YAO, Zhaoyin WEN, Shufeng SONG, Ning HU. Solvothermal synthesis of three-dimensional petaloid garnet electrolyte and its application in solid polymer electrolytes [J]. Energy Storage Science and Technology, 2021, 10(3): 905-913. |
[9] | Hang TU, Hang ZHANG, Lihui LIU, Jie LI, Xiaoqin SUN. Study on heat transfer of phase change materials imbedded in a concrete wall [J]. Energy Storage Science and Technology, 2021, 10(1): 287-294. |
[10] | Youman ZHAO, Xiaobo YAN, Hongkun DUAN, Zewei CHEN. Exploring mechanism of carbon nanotubes as conductive agent for improving performance of a silicon/carbon anode in LIB [J]. Energy Storage Science and Technology, 2021, 10(1): 118-127. |
[11] | Xie WU, Li ZHOU, Zhaoming XUE. Synthesis and performance of solid polymer electrolytes based on chelated boron lithium salts [J]. Energy Storage Science and Technology, 2021, 10(1): 96-103. |
[12] | Manman JIA, Long ZHANG. Recent development on sulfide solid electrolytes for solid-state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1266-1283. |
[13] | Ge SUN, Zhixuan WEI, Xinyuan ZHANG, Nan CHEN, Gang CHEN, Fei DU. Recent progress of sodium-based inorganic solid electrolytes [J]. Energy Storage Science and Technology, 2020, 9(5): 1251-1265. |
[14] | Jie WU, Xiaobiao JIANG, Yang YANG, Yongmin WU, Lei ZHU, Weiping TANG. Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 ≤x≤ 0.5) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(5): 1472-1488. |
[15] | Jing YANG, Gaozhan LIU, Lin SHEN, Xiayin YAO. Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1284-1299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||