Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (3): 905-913.doi: 10.19799/j.cnki.2095-4239.2021.0058
Previous Articles Next Articles
Yanfang ZHAI1(), Guanming YANG1, Wangshu HOU1, Jianyao YAO1, Zhaoyin WEN2, Shufeng SONG1(), Ning HU3()
Received:
2021-02-08
Revised:
2021-03-10
Online:
2021-05-05
Published:
2021-04-30
Contact:
Shufeng SONG,Ning HU
E-mail:zyf18223085635@163.com;sfsong@ cqu.edu.cn;ninghu@hebut.edu.cn
CLC Number:
Yanfang ZHAI, Guanming YANG, Wangshu HOU, Jianyao YAO, Zhaoyin WEN, Shufeng SONG, Ning HU. Solvothermal synthesis of three-dimensional petaloid garnet electrolyte and its application in solid polymer electrolytes[J]. Energy Storage Science and Technology, 2021, 10(3): 905-913.
1 | ZHANG X, WANG S, XUE C, et al. Self-suppression of lithium dendrite in all-solid-state lithium metal batteries with poly(vinylidene difluoride)-based solid electrolytes[J]. Advanced Materials, 2019, 31(11): doi: 10.1002/adma.201806082. |
2 | QUARTARONE E, MUSTARELLI P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives[J]. Chemical Society Reviews, 2011, 40(5): 2525-2540. |
3 | ZHANG Q Q, LIU K, DING F, et al. Recent advances in solid polymer electrolytes for lithium batteries[J]. Nano Research, 2017, 10(12): 4139-4174. |
4 | WANG H, SHENG L, YASIN G, et al. Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2020, 33: 188-215. |
5 | MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angewandte Chemie-International Edition, 2007, 46(41): 7778-7781. |
6 | THANGADURAI V, NARAYANAN S, PINZARU D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review[J]. Chemical Society Reviews, 2014, 43(13): 4714-4727. |
7 | RAMAKUMAR S, DEVIANNAPOORANI C, DHIVYA L, et al. Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications[J]. Progress in Materials Science, 2017, 88: 325-411. |
8 | AWAKA J, KIJIMA N, HAYAKAWA H, et al. Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure[J]. Journal of Solid State Chemistry, 2009, 182(8): 2046-2052. |
9 | WOLFENSTINE J, RANGASAMY E, ALLEN J L, et al. High conductivity of dense tetragonal Li7La3Zr2O12[J]. Journal of Power Sources, 2012, 208: 193-196. |
10 | RANGASAMY E, WOLFENSTINE J, SAKAMOTO J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12[J]. Solid State Ionics, 2012, 206: 28-32. |
11 | LI Y, HAN J T, WANG C A, et al. Optimizing Li+ conductivity in a garnet framework[J]. Journal of Materials Chemistry, 2012, 22(30): 15357-15361. |
12 | SONG S, SHEPTYAKOV D, KORSUNSKY A M, et al. High Li ion conductivity in a garnet-type solid electrolyte via unusual site occupation of the doping Ca ions[J]. Materials & Design, 2016, 93: 232-237. |
13 | DENG F, WU Y, TANG W, et al. Conformal, nanoscale gamma-Al2O3 coating of garnet conductors for solid-state lithium batteries[J]. Solid State Ionics, 2019, 342: doi: 10.1016/j.ssi.2019.115063. |
14 | SONG S, WU Y, DONG Z, et al. Multi-substituted garnet-type electrolytes for solid-state lithium batteries[J]. Ceramics International, 2020, 46(4): 5489-5494. |
15 | ZHENG J, DANG H, FENG X, et al. Li-ion transport in a representative ceramic-polymer-plasticizer composite electrolyte: Li7La3Zr2O12-polyethylene oxide-tetraethylene glycol dimethyl ether[J]. Journal of Materials Chemistry A, 2017, 5(35): 18457-18463. |
16 | FU K K, GONG Y, DAI J, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(26): 7094-7099. |
17 | LI Y, ZHANG W, DOU Q Q, et al. Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries[J]. Journal of Materials Chemistry A, 2019, 7(7): 3391-3398. |
18 | YANG T, ZHENG J, CHENG Q, et al. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: Mechanism of conductivity enhancement and role of doping and morphology[J]. ACS Applied Materials & Interfaces, 2017, 9(26): 21773-21780. |
19 | KOTOBUKI M, KOISHI M. Preparation of Li1.5Al0.5Ge1.5(PO4)3 solid electrolytes via the co-precipitation method[J]. Journal of Asian Ceramic Societies, 2019, 7(4): 551-557. |
20 | ZHAI H, XU P, NING M, et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries[J]. Nano Letters, 2017, 17(5): 3182-3187. |
21 | LIU K, WU M, JIANG H, et al. An ultrathin, strong, flexible composite solid electrolyte for high-voltage lithium metal batteries[J]. Journal of Materials Chemistry A, 2020, 8(36): 18802-18809. |
22 | ZHANG X, LIU T, ZHANG S, et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes[J]. Journal of the American Chemical Society, 2017, 139(39): 13779-13785. |
23 | XU D, SU J, JIN J, et al. In situ generated fireproof gel polymer electrolyte with Li6.4Ga0.2La3Zr2O12 as initiator and ion-conductive filler[J]. Advanced Energy Materials, 2019, 9 (25): doi: 10.1002/aenm.201900611. |
24 | YANG X, SUN Q, ZHAO C, et al. High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes[J]. Nano Energy, 2019, 61: 567-575. |
25 | WAN Z, LEI D, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder[J]. Advanced Functional Materials, 2019, 29(1): doi: 10.1002/adfm.201805301. |
26 | CHEN L, LI Y, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic"[J]. Nano Energy, 2018, 46: 176-184. |
27 | LI W W, SUN C Z, JIN J, et al. Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2019, 7(48): 27304-27312. |
28 | ZHU L, ZHU P, FANG Q, et al. A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery[J]. Electrochimica Acta, 2018, 292: 718-726. |
29 | SONG S, WU Y, TANG W, et al. Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide)[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7163-7170. |
30 | WANG X, ZHANG Y, ZHANG X, et al. Lithium-salt-rich PEO/Li0.3La0.557TiO3 interpenetrating composite electrolyte with three-dimensional ceramic nano-backbone for all-solid-state lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24791-24798. |
31 | SAPTIAMA I, KANETI Y V, SUZUKI Y, et al. Template-free fabrication of mesoporous alumina nanospheres using post-synthesis water-ethanol treatment of monodispersed aluminium glycerate nanospheres for molybdenum adsorption[J]. Small, 2018, 14(21): doi: 10.1002/smll.201800474. |
32 | MA F X, HU H, WU H B, et al. Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties[J]. Advanced Materials, 2015, 27(27): 4097-4101. |
33 | SEPTIANI N L W, KANETI Y V, FATHONI K B, et al. Self-assembly of nickel phosphate-based nanotubes into two-dimensional crumpled sheet-like architectures for high-performance asymmetric supercapacitors[J]. Nano Energy, 2020, 67: doi: 10.1016/j.nanoen.2019.104270. |
34 | SHEN L, YU L, WU H B, et al. Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms7694. |
35 | LI Z, HUANG H M, ZHU J K, et al. Ionic conduction in composite polymer electrolytes: Case of PEO: Ga-LLZO composites[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 784-791. |
[1] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[2] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[3] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[4] | Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes [J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. |
[5] | Yue SU, Xuhua LIU, Fanglei ZENG, Yurong REN, Bencai LIN. Preparation and properties of polyvinylidene fluoride/polyvinylidene fluoride sulfonate lithium/lithium salt composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(6): 2069-2076. |
[6] | Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. |
[7] | Ruliang LIU, Xingyuan GAO, Wei YIN, Naitao YANG. Synthesis of PVDF-HFP based gel polymer electrolyte and study of lithium ion battery performance [J]. Energy Storage Science and Technology, 2021, 10(6): 2077-2081. |
[8] | Bohui LU, Zhicheng SHI, Yongxue ZHANG, Hongyu ZHAO, Zixi WANG. Investigation of the charging and discharging performance of paraffin/nano-Fe3O4 composite phase change material in a shell and tube thermal energy storage unit [J]. Energy Storage Science and Technology, 2021, 10(5): 1709-1719. |
[9] | Saisai ZHANG, Hailei ZHAO. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress [J]. Energy Storage Science and Technology, 2021, 10(3): 863-871. |
[10] | Xie WU, Li ZHOU, Zhaoming XUE. Synthesis and performance of solid polymer electrolytes based on chelated boron lithium salts [J]. Energy Storage Science and Technology, 2021, 10(1): 96-103. |
[11] | Hang TU, Hang ZHANG, Lihui LIU, Jie LI, Xiaoqin SUN. Study on heat transfer of phase change materials imbedded in a concrete wall [J]. Energy Storage Science and Technology, 2021, 10(1): 287-294. |
[12] | Youman ZHAO, Xiaobo YAN, Hongkun DUAN, Zewei CHEN. Exploring mechanism of carbon nanotubes as conductive agent for improving performance of a silicon/carbon anode in LIB [J]. Energy Storage Science and Technology, 2021, 10(1): 118-127. |
[13] | Manman JIA, Long ZHANG. Recent development on sulfide solid electrolytes for solid-state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1266-1283. |
[14] | Ge SUN, Zhixuan WEI, Xinyuan ZHANG, Nan CHEN, Gang CHEN, Fei DU. Recent progress of sodium-based inorganic solid electrolytes [J]. Energy Storage Science and Technology, 2020, 9(5): 1251-1265. |
[15] | Jie WU, Xiaobiao JIANG, Yang YANG, Yongmin WU, Lei ZHU, Weiping TANG. Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 ≤x≤ 0.5) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(5): 1472-1488. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||