Energy Storage Science and Technology ›› 2014, Vol. 3 ›› Issue (2): 85-95.doi: 10.3969/j.issn.2095-4239.2014.02.001
• Invited reviews • Next Articles
HUANG Shu1,2, WANG Wei2,3, WANG Kangli2, JIANG Kai2,3, CHENG Shijie2
Received:
2013-12-18
Online:
2014-03-01
Published:
2014-03-01
CLC Number:
HUANG Shu, WANG Wei, WANG Kangli, JIANG Kai, CHENG Shijie. Recent progress about graphene for chemical energy storage applications[J]. Energy Storage Science and Technology, 2014, 3(2): 85-95.
[1] Novoselov K S,Geim A K,Morozov S V, et al . Electric field effect in atomically thin carbon films[J]. Science ,2004,306:666-671. [2] Lee C G,Wei X D,Kysar J W, et al . Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science ,2008,321:385-388. [3] Balandin A A,Ghosh S,Bao W Z, et al . Superior thermal conductivity of single-layer graphene[J]. Nano Lett. ,2008,8:902-907. [4] Peierls R E. Quelquesproprietiestypiques des corpses solides[J]. Ann. Inst. Henri Poincare, 1935,5:177-222. [5] Landau L D. Zur theorie der phasenumwandlungen II[J]. Phys. Z. Sowjetunion ,1937,11:26-35. [6] Geim A K,Novoselov K S. The rise of graphene[J]. Nat. Mater. ,2007,6:183-191. [7] Berger C,Song Z M,Li X B, et al . Electronic confinement and coherence in patterned epitaxial graphene[J]. Science ,2006,312(5777):1191-1196. [8] Wei D,Liu Y,Zhang H,Huang L,Wu B,Chen J,Yu G. Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches[J]. J. Am. Chem. Soc. ,2009,131(31):11147-11154. [9] Dreyer D R,Park S,Bielawski C W, et al . The chemistry of graphene oxide[J]. Chem. Soc. Rev. ,2010,39(1):228-241. [10] Xu E,Wei J,Wang K, et al . Doped carbon nanotube array with a gradient of nitrogen concentration[J]. Carbon ,2010,48(11):3097-3102. [11] Wei D,Grande L,Chundi V, et al . Graphene from electrochemical exfoliation and its direct applications in enhanced energy storage devices[J]. Chem. Commun. ,2012,48(9):1239-1241. [12] Schlapbach L,Zuttel A. Hydrogen-storage materials for mobile application[J]. Nature ,2001,414:353-358. [13] Turner J A. Sustainable hydrogen production[J]. Science ,2004,305(5686):972-974. [14] Zhou L,Zhou Y P,Sun Y. A comparative study of hydrogen adsorption on super activated carbon versus carbon nanotubes[J]. Int. J. Hydrog. Energy ,2004,29(5):475-479. [15] Frost H,Snurr R Q. Design requirements for metal-organic frameworks as hydrogen storage materials[J]. J. Phys. Chem. C. ,2007,111(50):18794-18803. [16] Li Q,Park O K,Lee J H. Positive temperature coefficient behavior of HDPE/EVA blends filled with carbon black[J]. Adv. Mater. Res. ,2009,79(1/2):2267-2270. [17] Yildirim T,Ciraci S. Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium[J]. Phys. Rev. Lett. ,2005,94(17):175501-175504. [18] DOE targets for onboard hydrogen storage systems for light-duty vehicles [EB/OL]. http://www.eere.energy. gov / hydrogen and fuel cells/ storage/pdfs/targets on board hydro storage explanation.pdf,2009,09. [19] Zhou L,Zhou Y,Sun Y. Enhanced storage of hydrogen at the temperature of liquid nitrogen[J]. Int. J. Hydrog. Energy ,2004,29:319-322. [20] Serguel P,Tse J S,Yurchenko S N, et al . Graphene nanostructures as tunable storage media for molecular hydrogen[J]. Acad. Sci. USA ,2005,102(30):10439-10444. [21] Lin Y,Ding F,Yakobson B I. Hydrogen storage by spillover on grapheneasa phase nucleation process[J]. Physical Review B ,2008,78:041402(R). [22] Ataca C,Aktürk E,Ciraci S. Hydrogen storageof calcium atoms adsorbed on graphene:First-principles plane wave calculations[J]. Physical Review B ,2009,79(4):041406(R). [23] Dimitrakakis G K,Tylianakis E,Froudakis G E, et al . Pillared graphene:A new 3-D network nanostructure for enhanced hydrogen storage[J]. Nano Lett. ,2008,8(10):3166-3170. [24] Chen C H,Chung T Y,Shen C C, et al . Hydrogen storage performance in palladium doped graphene/carbon composites[J]. Int. J. Hydrog. Energy ,2013,38:3681-3688. [25] Simon P,Gogotsi Y. Materials for electrochemical capacitors[J]. Nat. Mater. ,2008,7:845-854. [26] Sharma P,Bhatti T S. A review on electrochemical double-layer capacitors[J]. Energy Conv. Manag. ,2010,51(12):2901-2912. [27] Inagaki M,Konno H,Tanaike O. Carbon materials for electrochemical capacitors[J]. J. Power Sources ,2010,195(24):7880-7903. [28] Chen J,Li C,Shi G Q. Graphene materials for electrochemical capacitors[J]. J. Phys. Chem. Lett. ,2013,4:1244-1253. [29] Stolter M D,Park S,Zhu Y, et al .Graphene-based ultracapacitors[J]. Nano Lett. ,2008,8:3498-3502. [30] Vivekchand S R C,Route C S,Subrahmanyam K S, et al . Graphene-based electrochemical supercapacitors[J]. J. Chem. Sci. ,2008,120(1):9-13. [31] Li J,Xie H Q,Li Y, et a1 .Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors [J]. J. Power Sources ,2011,196(24):10775-10781. [32] Wu Z S,Wang D W,Ren W C. Anchoring hydrous RuO 2 on graphene sheets for high-performance electrochemical capacitors[J]. Adv. Funct. Mater. ,2010,20:3595-3603. [33] Rakhi R B,Alshareef H N. Enhancement of the energy storage properties of supercapacitors using graphene nanosheets dispersed with metal oxide-loaded carbon nanotubes[J]. J. Power Sources ,2011,196:8858-8865. [34] Wang D W,Li F,Zhao J, et al . Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode[J]. ACS Nano ,2009,3:1745-1752. [35] Fan Z,Yan J,Wei T, et al . Asymmetric supercapacitors based on graphene/Mno 2 and activated carbon nanofiber electrodes with high power and energy density[J]. Adv. Funct. Mater .,2011,21:2366-2374. [36] Zhang L L,Zhou R,Zhao X S, et al . Graphene-based materials as supercapacitor electrodes[J]. J. Mater. Chem. ,2010,20:5983-5992. [37] Yan J,Fan Z J,Wei T, et al . Fast and reversible surface redox reaction of graphene-MnO 2 composites as supercapacitor electrodes[J]. Carbon ,2010,48(13):3825-3833. [38] Peng L L,Peng X,Liu B R, et al . Ultrathin two-dimensional MnO 2 /graphene hybrid nanostructures for high-performance,flexible planar supercapacitors[J]. Nano Lett. ,2013,13(5):2151-2157. [39] Fan Z J,Yan J,Zhi L J, et al . A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors[J]. Adv. Mater. ,2010,22(33):3723-3728. [40] Dong L,Chen Z X,Yang D, et al . Hierarchically structured graphene-based supercapacitor electrodes[J]. RSC Adv. ,2013,3:21183-21191. [41] Lü W,Tang D M,He Y B, et al . Low-temperature exfoliated graphenes:Vacuum-promoted exfoliation and electrochemical energy storage[J]. ACS Nano ,2009,3(11):3730-3736. [42] McAllister M J,Li J L,Adamson D M, et al . Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chem. Mater. ,2007,19(18):4396-4404. [43] Tarascon J M,Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature ,2001,414:359-367. [44] Fergus J W. Recent developments in cathode materials for lithium ion batteries[J]. J. Power Sources ,2010,195(4):939-954. [45] Armand M,Tarascon J M. Building better batteries[J]. Nature ,2008,451(7179):652-657. [46] Ishihara T,Kawahara A,Takita Y, et al . Effects of synthesis condition of graphitic nanocarbon tube on anodicproperty of Li-ion rechargeable battery[J]. J. Power Sources ,2001,97&98 :129-132. [47] Dunn B,Kamath H,Tarascon J M. Electrical energy storage for the grid:A battery of choices[J]. Science ,2011,334(6058):928-935. [48] Zhi L J,Hu Y S,Hamaoui B E. Precursor-controlled formation of novel carbon/metal and carbon/metal oxide nanocomposites[J]. Adv. Mater. ,2008,20:1727-1731. [49] Wang D H,Choi D W,Li J, et al . Self- assembled TiO 2 -graphene hybrid nanostructures for enhanced Li-ion insertion[J]. ACS Nano ,2009,3:907-914. [50] Wang C,Li D,Too C O, et al . Electrochemical properties of graphene paper electrodes used in lithium batteries[J]. Chem. Mater. ,2009,21(13):2604-2606. [51] Xue D J,Xin S,Yan Y, et al . Improving the electrode performance of Ge through Ge@C core-shell nanoparticles and graphene networks[J]. J. Am. Chem. Soc. ,2012,134(5):2512-2515. [52] Yang X W,Qiu L,Cheng C, et al . Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films[J]. Angew. Chem. Int. Edit. ,2011,50(32):7325-7328. [53] Su F,He Y B,Li B H, et al . Could graphene construct an effective conducting network in a high-power lithium ion battery?[J] . Nano Energy ,2012,1:429-439. [54] Wang G X,Wang B,Wang X L, et al . Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries[J]. J. Mater. Chem. ,2009,19(44):8378-8384. [55] Kwon Y J,Kim H,Doo S G, et al . Sn 0.9 Si 0.1 /carbon core-shell nanoparticles for high-density lithium storage materials[J]. Chem. Mater. ,2007,19(5):982-986. [56] Yang S B,Feng X L,Zhi L J, et al . Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage[J]. Adv. Mater. ,2010,22(7):838-842. [57] Wang G X,Shen X P,Yao J, et al . Graphene nanosheets for enhanced lithium storage in lithium ion batteries[J]. Carbon ,2009,47(8):2049-2053. [58] Behera S K. Enhanced rate performance and cyclic stability of Fe 3 O 4 -graphene nano composites for Li ion battery anodes[J]. Chem. Commun. ,2011,47(37):10371-10373. [59] Liang M H,Zhi L Z. Graphene-based electrode materials for rechargeable lithium batteries[J]. J. Mater. Chem. ,2009,19:5871-5878. [60] Paek S M,Yoo E J,Honma I. Enhanced cyclic performance and lithium storage capacity of SnO 2 / graphene nanoporous electrodes with three-dimensionally delaminated flexible structure[J]. Nano Lett. ,2009,9(1):72-75. [61] Lee J W,Hoo A S,Kim J D, et al . A facile and template-free hydrothermal synthesis of Mn 3 O 4 nano rods on graphene sheets for supercapacitor electrodes with long cycle stability[J]. Chem. Mater .,2012,24:1158-1164. [62] Wang X Y,Zhou X F,Yao K, et al . A SnO 2 /graphene composite as a high stability electrode for lithium ion batteries[J]. Carbon ,2011,49:133-139. [63] Wang D H,Kou R,Choi D, et al . Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage[J]. ACS Nano ,2010,4:1587-1595. [64] Wang H L,Cui L F,Yang Y, et al . Mn 3 O 4 -graphene hybrid as a high-capacity anode material for lithium ion batteries[J]. J. Am. Chem. Soc. ,2010,132 (40):13978-13980. [65] Fan Z J,Yan J,Ning G Q, et al . Porous graphene networks as high performance anode materials for lithium ion batteries[J]. Carbon ,2013,60:558-561. [66] Pan D Y,Wang S,Zhao B, et al . Li storage properties of disordered graphene nanosheets[J]. Chem. Mater. ,2009,21(14):3136-3142 [67] Wei W,Yang S,Zhou H, et al . 3D graphene foams cross-linked with pre-encapsulated Fe 3 O 4 nanospheres for enhanced lithium storage[J]. Adv. Mater. ,2013,25(21):2909-2914. [68] Rao C V,Reddy A L M,Ishikawa Y, et al. LiNi 1/3 Co 1/3 Mn 1/3 O 2 - graphene composite as a promising cathode for lithium-ion batteries[J]. ACS Appl. Mater. & Interfaces, 2011,3(8):2966-2972. [69] Liu H D,Gao P,Fang J, et al. Li 3 V 2 (PO 4 ) 3 /graphenenanocomposites as cathode material for lithium ion batteries[J]. Chem. Commun. ,2011,47(32):9110-9112. [70] Wang H L,Yang Y,Liang Y Y, et al . Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Lett. ,2011,11(7):2644-2647. [71] Wang J Z,Lu L,Choucair M, et al . Sulfur-graphene composite for rechargeable lithium batteries[J]. J. Power Sources ,2011,196(16):7030-7034. [72] Cao Y L,Li X L,Aksay I A, et al . Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries[J]. Phys. Chem. ,2011,13(17):7660-7665. [73] Zhou G M,Pei S F,Li L, et al . A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[J]. Adv. Mater. ,2013,doi:10.1002/ adma. 201302877. [74] Huang J Q,Liu X F,Zhang Q, et al . Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from -40 ℃ to 60 ℃[J]. Nano Energy ,2013,2:314-321. [75] Zhou G M,Yin L C,Wang D W, et al . Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries[J]. ACS Nano ,2013,7(6):5367-5375. [76] Ji L W,Rao M M,Zheng H M, et al . Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. J. Am. Chem. Soc. ,2011,133:18522-18525. [77] Kowalczk I,Read J,Salomon M. Li-air batteries:A classic example of limitations owing to solubilities[J]. Pure Appl. Chem. ,2007,79(5):851-860 [78] Abraham K M,Jiang Z. A polymer electrolyte-based rechargeable lithium/oxygen battery[J]. J. Electrochemi. Soc. ,1996,143 (1):1-5. [79] Cao R G,Lee J S,Liu M L, et al . Recent progress in non-precious catalysts for metal-air batteries[J]. Adv. Energy Mater. ,2012,2(7):816-829. [80] Kim H,Lim H D,Kim J, et al . Graphene for advanced Li/S and Li/air batteries[J]. J. Mater. Chem. A ,2014,1(2):33-47. [81] Sun B,Wang B,Su D W, et al . Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance[J]. Carbon ,2012,50(2):727-733. [82] Zhang W Y,Zhu J X,Ang H X, et al . Binder-free graphene foams for O 2 electrodes of LiO 2 batteries[J]. Nano Scale ,2013,5:9651-9658. [83] Xiao J,Mei D,Li X, et al . Hierarchically porous graphene as a lithium-air battery electrode[J]. Nano Lett. ,2011,11:5071-5078 [84] Yoo E,Zhou H S. Li-air rechargeable battery based on metal-free graphene nanosheet catalysts[J]. ACS Nano ,2011,5(4):3020-3026. |
[1] | Yuzuo WANG, Yinli LU, Miao DENG, Bin YANG, Xuewen YU, Ge JIN, Dianbo RUAN. Research progress of self-discharge in supercapacitors [J]. Energy Storage Science and Technology, 2022, 11(7): 2114-2125. |
[2] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[3] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[4] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[5] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[6] | Yongli TONG, Xiang WU. Electrochemical performance of Co3O4 electrode materials derived from Co metal-organic framework [J]. Energy Storage Science and Technology, 2022, 11(3): 1035-1043. |
[7] | Zhongmin REN, Bin WANG, Shuaishuai CHEN, Hua LI, Zhenlian CHEN, Deyu WANG. Mechanics-induced degradation on layer-structured cathodes and remedies to address it [J]. Energy Storage Science and Technology, 2022, 11(3): 948-956. |
[8] | Bowen YUE, Jiahuan TONG, Yuwen LIU, Feng HUO. Simulation calculation method and application of ionic liquid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(3): 897-911. |
[9] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[10] | Siqi SHI, Zhangwei TU, Xinxin ZOU, Shiyu SUN, Zhengwei YANG, Yue LIU. Applying data-driven machine learning to studying electrochemical energy storage materials [J]. Energy Storage Science and Technology, 2022, 11(3): 739-759. |
[11] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wei CHEN. International development trend analysis of next-generation electrochemical energy storage technology [J]. Energy Storage Science and Technology, 2022, 11(1): 89-97. |
[12] | Xue HAN, Wei DENG, Xufeng ZHOU, Zhaopin LIU. Patenting activity of graphene for energy storage [J]. Energy Storage Science and Technology, 2022, 11(1): 335-349. |
[13] | Tianxin XU, Xikun TIAN, Jun YAN, Qiang YE, Changying ZHAO. Thermochemical energy storage reaction performance of CaCO3 with TiO2 doping [J]. Energy Storage Science and Technology, 2022, 11(1): 1-8. |
[14] | Jian LIU. Economic assessment for energy storage technologies adaptive to variable renewable energy [J]. Energy Storage Science and Technology, 2022, 11(1): 397-404. |
[15] | Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA. Advances in battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||