Energy Storage Science and Technology ›› 2014, Vol. 3 ›› Issue (2): 96-105.doi: 10.3969/j.issn.2095-4239.2014.02.002
• Research highlight • Previous Articles Next Articles
CHEN Bin, WANG Hao, YAN Yong, XU Kaiqi, LIN Mingxiang, TANG Daichun, DONG Jinping, SUN Yang, BEN Liubin, HUANG Xuejie
Received:
2014-02-15
Online:
2014-03-01
Published:
2014-03-01
CLC Number:
CHEN Bin, WANG Hao, YAN Yong, XU Kaiqi, LIN Mingxiang, TANG Daichun, DONG Jinping, SUN Yang, BEN Liubin, HUANG Xuejie. Reviews of selected recent important papers for lithium batteries(Dec. 1,2013 to Jan. 31,2014)[J]. Energy Storage Science and Technology, 2014, 3(2): 96-105.
[1] Amalraj F,Talianker M,Markovsky B, et al . Studies of Li and Mn-rich Li x [MnNiCo]O 2 electrodes:Electrochemical performance, structure,and the effect of the aluminum fluoride coating[J]. Journal of the Electrochemical Society ,2013,160(11): A2220-A2233. [2] Liu Y J,Gao Y Y,Lv J, et al . A facile method to synthesize carbon coated Li 1.2 Ni 0.2 Mn 0.6 O 2 with improved performance[J]. Materials Research Bulletin ,2013,48(11):4930-4934. [3] Zheng J M,Shi W,Gu M, et al. Electrochemical kinetics and performance of layered composite cathode material Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 [J]. Journal of the Electrochemical Society , 2013,160(11):A2212-A2219. [4] Wu F,Li N,Su Y F, et al. Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries[J]. Advanced Materials ,2013,25(27):3722-3726. [5] Bhuvaneswari D,Babu G,Kalaiselvi N. Effect of surface modifiers in improving the electrochemical behavior of LiNi 0.4 Mn 0.4 Co 0.2 O 2 cathode[J]. Electrochimica Acta ,2013,109: 684-693. [6] Jiang Q L,Du K,He Y H. A novel method for preparation of LiNi 1/3 Mn 1/3 Co 1/3 O 2 cathode material for Li-ion batteries[J]. Electrochimica Acta ,2013,107:133-138. [7] Wetjen M,Kim G T,Joost M, et al . Thermal and electrochemical properties of PEO-LiTFSI-Pyr 14 TFSI-based composite cathodes, incorporating 4 V-class cathode active materials[J]. Journal of Power Sources ,2014,246:846-857. [8] Watanabe S,Kinoshita M,Nakura K. Capacity fade of LiNi (1- x - y ) Co x Al y O 2 cathode for lithium-ion batteries during accelerated calendar and cycle life test I:Comparison analysis between LiNi (1- x - y ) Co x Al y O 2 and Li CoO 2 cathodes in cylindrical lithium-ion cells during long term storage test[J]. Journal of Power Sources ,2014,247:412-422. [9] Taguchi N,Akita T,Sakaebe H, et al . Characterization of the surface of LiCoO 2 particles modified by Al and Si oxide using analytical TEM[J]. Journal of the Electrochemical Society , 2013,160(11):A2293-A2298. [10] Nishio K,Ohnishi T,Akatsuka K, et al . Crystal orientation of epitaxial LiCoO 2 films grown on SrTiO 3 substrates[J]. Journal of Power Sources ,2014,247:687-691. [11] Maram P S,Costa G C C,Navrotsky A. Experimental confirmation of low surface energy in LiCoO 2 and implications for lithium battery electrodes[J]. Angewandte Chemie-International Edition ,2013, 52(46):12139-12142. [12] Chemelewski K R,Li W,Gutierrez A, et al . High-voltage spinel cathodes for lithium-ion batteries:Controlling the growth of preferred crystallographic planes through cation doping[J]. Journal of Materials Chemistry A ,2013,1(48):15334-15341. [13] Kim H J,Jin B S,Doh C H, et al . Improved electrochemical performance of doped-LiNi 0.5 Mn 1.5 O 4 cathode material for lithium-ion batteries[J]. Electronic Materials Letters ,2013, 9(6):851-854. [14] Liu G Q,Zhang L X,Sun L, et al . A new strategy to diminish the 4 V voltage plateau of LiNi 0.5 Mn 1.5 O 4 [J]. Materials Research Bulletin ,2013,48(11):4960-4962. [15] Pang W K,Sharma N,Peterson V K, et al . In-situ neutron diffraction study of the simultaneous structural evolution of a LiNi 0.5 Mn 1.5 O 4 cathode and a Li 4 Ti 5 O 12 anode in a LiNi 0.5 Mn 1.5 O 4 parallel to Li 4 Ti 5 O 12 full cell[J]. Journal of Power Sources , 2014,246:464-472. [16] Konishi H,Suzuki K,Taminato S, et al . Structure and electrochemical properties of LiNi 0.5 Mn 1.5 O 4 epitaxial thin film electrodes[J]. Journal of Power Sources ,2014,246:365-370. [17] Vidal E,Rojo J M,Garcia-alegre M C, et al . Effect of composition,sonication and pressure on the rate capability of 5 V-LiNi 0.5 Mn 1.5 O 4 composite cathodes[J]. Electrochimica Acta , 2013,108:175-181. [18] Lee S,Jeong M,Cho J. Optimized 4 V spinel cathode material with high energy density for Li-ion cells operating at 60 ℃[J]. Advanced Energy Materials ,2013,3(12):1623-1629. [19] Lee S,Oshima Y,Hosono E, et al . In situ TEM observation of local phase transformation in a rechargeable LiMn 2 O 4 nanowire battery[J]. Journal of Physical Chemistry C ,2013,117(46): 24236-24241. [20] Ichitsubo T,Doi T,Tokuda K, et al . What determines the critical size for phase separation in LiFePO 4 in lithium ion batteries?[J]. Journal of Materials Chemistry A ,2013,1(46):14532-14537. [21] Sugar J D,El Gabaly F,Chueh W C, et al . High-resolution chemical analysis on cycled LiFePO 4 battery electrodes using energy-filtered transmission electron microscopy[J]. Journal of Power Sources ,2014,246:512-521. [22] Zhu Y J,Wang J W,Liu Y, et al . In situ atomic-scale imaging of phase boundary migration in FePO 4 microparticles during electrochemical lithiation[J]. Advanced Materials ,2013, 25(38):5461-5466. [23] Wang B,Li X L,Zhang X F, et al . Contact-engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes[J]. Advanced Materials ,2013,25(26):3560-3565. [24] Zeilinger M,Kurylyshyn I M,Haussermann U, et al . Revision of the Li-Si phase diagram:Discovery and single-crystal X-ray structure determination of the high-temperature phase Li 4.11 Si[J]. Chemistry of Materials ,2013,25(22):4623-4632. [25] Cho J H,Picraux S T. Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands[J]. Nano Letters ,2013,13(11):5740-5747. [26] Lee K J,Yu S H,Kim J J, et al . Si 7 Ti 4 Ni 4 as a buffer material for Si and its electrochemical study for lithium ion batteries[J]. Journal of Power Sources ,2014,246:729-735. [27] Sim S,Oh P,Park S, et al . Critical thickness of SiO 2 coating layer on core@shell bulk@nanowire Si anode materials for Li-ion batteries[J]. Advanced Materials ,2013,25(32):4498-4503. [28] Wu M Y,Sabisch J E C,Song X Y, et al . In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes[J]. Nano Letters ,2013,13(11):5397-5402. [29] Fu K,Yildiz O,Bhanushali H, et al . Aligned carbon nanotube-silicon sheets:A novel nano-architecture for flexible lithium ion battery electrodes[J]. Advanced Materials ,2013, 25(36):5109-5114. [30] Nguyen D T,Nguyen C C,Kim J S, et al . Facile synthesis and high anode performance of carbon fiber-interwoven amorphous nano-SiO x /graphene for rechargeable lithium batteries[J]. ACS Applied Materials & Interfaces ,2013,5(21):11234-11239. [31] Park J,Park S S,Won Y S. In situ XRD study of the structural changes of graphite anodes mixed with SiO x during lithium insertion and extraction in lithium ion batteries[J]. Electrochimica Acta ,2013,107:467-472. [32] Pharr M,Suo Z G,Vlassak J J. Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries[J]. Nano Letters ,2013,13(11):5570-5577. [33] Wang C,Wu H,Chen Z, et al . Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries[J]. Nature Chemistry ,2013,5(12): 1043-1049. [34] Jin S X,Li N,Cui H, et al . Growth of the vertically aligned graphene@amorphous GeO x sandwich nanoflakes and excellent Li storage properties[J]. Nano Energy ,2013,2(6):1128-1136. [35] Kim G P,Nam I,Park S, et al . Preparation via an electrochemical method of graphene films coated on both sides with NiO nanoparticles for use as high-performance lithium ion anodes[J]. Nanotechnology ,2013,24(47),doi:10.1088/0957-4484/24/47/ 475402. [36] Li D,Seng K H,Shi D Q, et al . A unique sandwich-structured C/Ge/graphene nanocomposite as an anode material for high power lithium ion batteries[J]. Journal of Materials Chemistry A ,2013,1(45):14115-14121. [37] Odkhuu D,Jung D H,Lee H, et al . Negatively curved carbon as the anode for lithium ion batteries[J]. Carbon ,2014,66:39-47. [38] Chen Y M,Li X Y,Park K, et al . Hollow carbon-nanotube/ carbon-nanofiber hybrid anodes for Li-ion batteries[J]. Journal of the American Chemical Society ,2013,135(44):16280-16283. [39] Jana M,Sil A,Ray S. Morphology of carbon nanostructures and their electrochemical performance for lithium ion battery[J]. Journal of Physics and Chemistry of Solids ,2014,75(1):60-67. [40] Chang K,Geng D S,Li X F, et al . Ultrathin MoS 2 /nitrogen-doped graphene nanosheets with highly reversible lithium storage[J]. Advanced Energy Materials ,2013,3(7):839-844. [41] Chen P,Su Y,Liu H, et al . Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications[J]. ACS Applied Materials & Interfaces ,2013, 5(22):12073-12082. [42] Nobili F,Meschini I,Mancini M, et al . High-performance Sn@carbon nanocomposite anode for lithium-ion batteries:Lithium storage processes characterization and low-temperature behavior[J]. Electrochimica Acta ,2013,107:85-92. [43] Wei W,Guo L. One-step in situ synthesis of GeO 2 /graphene composites anode for high-performance Li-ion batteries[J]. Particle & Particle Systems Characterization ,2013,30(8):658-661. [44] Chen Q,Sieradzki K. Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems[J]. Nature Materials ,2013,12(12):1102-1106. [45] Kitta M,Matsuda T,Maeda Y, et al . Atomistic structure of a spinel Li 4 Ti 5 O 12 (111)surface elucidated by scanning tunneling microscopy and medium energy ion scattering spectrometry[J]. Surface Science ,2014,619:5-9. [46] Ui K,Fujii D,Niwata Y, et al . Analysis of solid electrolyte interface formation reaction and surface deposit of natural graphite negative electrode employing polyacrylic acid as a binder[J]. Journal of Power Sources ,2014,247:981-990. [47] Barteau K P,Wolffs M,Lynd N A, et al . Allyl glycidyl ether-based polymer electrolytes for room temperature lithium batteries[J]. Macromolecules ,2013,46(22):8988-8994. [48] Cheng L,Park J S,Hou H M, et al . Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li 7 La 3 Zr 2 O 12 [J]. Journal of Materials Chemistry A ,2014,2(1):172-181. [49] Loebl A J,Oldham C J,Devine C K, et al . Solid electrolyte interphase on lithium-ion carbon nanofiber electrodes by atomic and molecular layer deposition[J]. Journal of the Electrochemical Society ,2013,160(11):A1971-A1978. [50] Pieczonka N P W,Yang L,Balogh M P, et al . Impact of lithium bis (oxalate) borate electrolyte additive on the performance of high-voltage spinel/graphite Li-ion batteries[J]. Journal of Physical Chemistry C ,2013,117(44):22603-22612. [51] Xu M Q,Zhou L,Dong Y N, et al . Improving the performance of graphite/LiNi 0.5 Mn 1.5 O 4 cells at high voltage and elevated temperature with added lithium bis (oxalato) borate (LiBOB)[J]. Journal of the Electrochemical Society ,2013,160(11): A2005-A2013. [52] Cao X,Li Y X,Li X B, et al . Novel phosphamide additive to improve thermal stability of solid electrolyte lnterphase on graphite anode in lithium-lon batteries[J]. ACS Applied Materials & Interfaces ,2013,5(22):11494-11497. [53] Yamada Y,Yaegashi M,Abe T, et al . A superconcentrated ether electrolyte for fast-charging Li-ion batteries[J]. Chemical Communications ,2013,49(95):11194-11196. [54] Giordani V,Bryantsev V S,Uddin J, et al . N-methylacetamide as an electrolyte solvent for rechargeable LiO 2 batteries:Unexpected stability at the O 2 electrode[J]. ECS Electrochemistry Letters , 2014,3(1):A11-A14. [55] Hogstrom K C,Malmgren S,Hahlin M, et al . The influence of PMS-additive on the electrode/electrolyte interfaces in LiFePO 4 /graphite Li-ion batteries[J]. Journal of Physical Chemistry C ,2013, 117(45):23476-23486. [56] Zhu Y,Casselman M D,Li Y, et al . Perfluoroalkyl-substituted ethylene carbonates:Novel electrolyte additives for high-voltage lithium-ion batteries[J]. Journal of Power Sources ,2014, 246:184-191. [57] Kim S Y,Lee H T,Kim K B. Electrochemical properties of graphene flakes as an air cathode material for LiO 2 batteries in an ether-based electrolyte[J]. Physical Chemistry Chemical Physics , 2013,15(46):20262-20271. [58] Sun K,Wei T S,Ahn B Y, et al . 3D Printing of interdigitated Li-ion microbattery architectures[J]. Advanced Materials ,2013, 25(33):4539-4543. [59] Zheng J M,Gu M,Wang C M, et al . Controlled nucleation and growth process of Li 2 S 2 /Li 2 S in lithium-sulfur batteries[J]. Journal of the Electrochemical Society ,2013,160(11):A1992-A1996. [60] Arruda T M,Lawton J S,Kumar A, et al . In situ formation of micron-scale Li-metal anodes with high cyclability[J]. ECS Electrochemistry Letters ,2014,3(1):A4-A7. [61] Fu Y Z,Zu C X,Manthiram A. In situ-formed Li 2 S in lithiated graphite electrodes for lithium-sulfur batteries[J]. Journal of the American Chemical Society ,2013,135(48):18044-18047. [62] Placke T,Rothermel S,Fromm O, et al . Influence of graphite characteristics on the electrochemical intercalation of bis (trifluoromethane- sulfonyl) imide anions into a graphite-based cathode[J]. Journal of the Electrochemical Society ,2013,160(11):A1979-A1991. [63] Bettge M,Li Y,Gallagher K, et al . Voltage fade of layered oxides:Its measurement and impact on energy density[J]. Journal of the Electrochemical Society ,2013,160(11):A2046-A2055. [64] Allu S,Kalnaus S,Elwasif W, et al . A new open computational framework for highly-resolved coupled three-dimensional multiphysics simulations of Li-ion cells[J]. Journal of Power Sources , 2014,246:876-886. [65] Christensen J,Cook D,Albertus P. An efficient parallelizable 3D thermoelectrochemical model of a Li-ion cell[J]. Journal of the Electrochemical Society ,2013,160(11):A2258-A2267. [66] Delacourt C. Modeling Li-ion batteries with electrolyte additives or contaminants[J]. Journal of the Electrochemical Society ,2013, 160(11):A1997-A2004. [67] Hu Y Y,Liu Z G,Nam K W, et al . Origin of additional capacities in metal oxide lithium-ion battery electrodes[J]. Nature Materials , 2013,12(12):1130-1136. [68] Akolkar R. Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature[J]. Journal of Power Sources ,2014,246:84-89. [69] Eddahech A,Briat O,Vinassa J M. Thermal characterization of a high-power lithium-ion battery:Potentiometric and calorimetric measurement of entropy changes[J]. Energy ,2013,61:432-439. [70] Krachkoyskiy S A,Pauric A D,Halalay I C, et al . Slice-selective NMR diffusion measurements:A robust and reliable tool for in situ characterization of ion-transport properties in lithium-ion battery electrolytes[J]. Journal of Physical Chemistry Letters ,2013, 4(22):3940-3944. [71] Bianchini M,Leriche J B,Laborier J L, et al . A new null matrix electrochemical cell for rietveld refinements of in-situ or operando neutron powder diffraction data[J]. Journal of the Electrochemical Society ,2013,160(11):A2176-A2183. [72] Johnsen R E,Norby P. Capillary-based micro-battery cell for in situ X-ray powder diffraction studies of working batteries:A study of the initial intercalation and deintercalation of lithium into graphite[J]. Journal of Applied Crystallography ,2013,46:1537-1543. [73] Lee S H,You H G,Han K S, et al . A new approach to surface properties of solid electrolyte interphase on a graphite negative electrode[J]. Journal of Power Sources ,2014,247:307-313. [74] Ebner M,Geldmacher F,Marone F, et al . X-ray tomography of porous,transition metal oxide based lithium ion battery electrodes[J]. Advanced Energy Materials ,2013,3(7): 845-850. [75] Maher K,Yazami R. A study of lithium ion batteries cycle aging by thermodynamics techniques[J]. Journal of Power Sources ,2014, 247:527-533. [76] Schmid M J,Bickel K R,Novak P, et al . Microcalorimetric measurements of the solvent contribution to the entropy changes upon electrochemical lithium bulk deposition[J]. Angewandte Chemie-International Edition ,2013,52(50):13233-13237. [77] Shono K,Kobayashi T,Tabuchi M, et al . Proposal of simple and novel method of capacity fading analysis using pseudo-reference electrode in lithium ion cells:Application to solvent-free lithium ion polymer batteries[J]. Journal of Power Sources ,2014,247: 1026-1032. [78] Okamoto A,Niwa N,Egashira M, et al . Application of electrodeposited aluminum foil to the current collector of positive electrode for lithium-ion batteries[J]. Electrochemistry ,2013, 81(11):906-911. [79] Gu M,Parent L R,Mehdi B L, et al . Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes[J]. Nano Letters ,2013,13(12): 6106-6112. [80] Chiuhuang C K,Huang H Y S. Stress evolution on the phase boundary in LiFePO 4 particles[J]. Journal of the Electrochemical Society ,2013,160(11):A2184-A2188. [81] Sushko P V,Rosso K M,Zhang J G, et al . Oxygen vacancies and ordering of d-levels control voltage suppression in oxide cathodes:The case of spinel LiNi 0.5 Mn 1.5 O 4 -delta[J]. Advanced Functional Materials ,2013,23(44):5530-5535. [82] Lang L,Dong C D,Chen G H, et al . Self-stopping effects of lithium penetration into silicon nanowires[J]. Nanoscale ,2013, 5(24):12394-12398. [83] Malyi O,Kulish V V,Tan T L, et al . A computational study of the insertion of Li,Na,and Mg atoms into Si(111)nanosheets[J]. Nano Energy ,2013,2(6):1149-1157. [84] Okoshi M,Yamada Y,Yamada A, et al . Theoretical analysis on de-solvation of lithium,sodium,and magnesium cations to organic electrolyte solvents[J]. Journal of the Electrochemical Society , 2013,160(11):A2160-A2165. [85] Shkrob I A,Zhu Y,Marin T W, et al . Mechanistic insight into the protective action of bis (oxalato) borate and difluoro (oxalate) borate anions in Li-ion batteries[J]. Journal of Physical Chemistry C ,2013,117(45):23750-23756. [86] Leung K,Tenney C M. Toward first principles prediction of voltage dependences of electrolyte/electrolyte interfacial processes in lithium ion batteries[J]. Journal of Physical Chemistry C ,2013, 117(46):24224-24235. [87] Seyyedhosseinzadeh H,Mahboubi F,Azadmehr A. Diffusion mechanism of lithium ions in LiNi 0.5 Mn 1.5 O 4 [J]. Electrochimica Acta ,2013,108:867-875. [88] Dai Y L,Cai L,White R E. Simulation and analysis of stress in a Li-ion battery with a blended LiMn 2 O 4 and LiNi 0.8 Co 0.15 Al 0.05 O 2 cathode[J]. Journal of Power Sources ,2014,247:365-376. [89] Jin L Y,De Leeuw S,Koudriachova M V, et al . Molecular insights:Structure and dynamics of a Li-ion doped organic ionic plastic crystal[J]. Physical Chemistry Chemical Physics ,2013, 15(45):19570-19574. [90] Ji Y,Wang C Y. Heating strategies for Li-ion batteries operated from subzero temperatures[J]. Electrochimica Acta ,2013,107: 664-674. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[8] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[9] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[12] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[13] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[14] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[15] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||