Energy Storage Science and Technology ›› 2015, Vol. 4 ›› Issue (6): 585-598.doi: 10.3969/j.issn.2095-4239.2015.06.006
• Research &development • Previous Articles Next Articles
WANG Zhiwen, XIONG Wei, WANG Haitao, WANG Zuwen
Received:
2015-06-11
Online:
2015-12-19
Published:
2015-12-19
CLC Number:
WANG Zhiwen, XIONG Wei, WANG Haitao, WANG Zuwen. A review on underwater compressed air energy storage[J]. Energy Storage Science and Technology, 2015, 4(6): 585-598.
[1] 能源科学学科发展战略研究组. 2011—2020年我国能源科学学科发展战略报告(第四稿)[R]. 2010. [2] Ye Weiguo(叶卫国). Prospective of family base distributed energy storage[J]. Energy Storage Science and Technology (储能科学与技术),2014,3(4):410-415. [3] Zhang Xinjing(张新敬),Chen Haisheng(陈海生),Liu Jinchao(刘金超),Li Wen(李文),Tan Chunqing(谭春青). Research progress in compressed air energy storage system:A review[J]. Energy Storage Science and Technology (储能科学与技术),2012,1(1):26-40. [4] Deng Guangyi(邓广义),Guo Zuogang(郭祚刚),Chen Guangming(陈光明). Design and thermodynamic analysis of compressed air energy storage system[J]. Energy Storage Science and Technology (储能科学与技术),2013,2(6):615-619. [5] Chen Haisheng(陈海生),Liu Jinchao(刘金超),Guo Huan(郭欢),Xu Yujie(徐玉杰),Tan Qingchun(谭青春). Technical principle of compressed air energy storage system[J]. Energy Storage Science and Technology (储能科学与技术),2013,2(2):146-151. [6] Zhang Jun(张军),Dai Weiyi(戴炜轶). Overview of international roadmap studies on energy storage technologies[J]. Energy Storage Science and Technology (储能科学与技术),2015,4(3):260-266. [7] Zhao Xingang,Ren Lingzhi. Focus on the development of offshore wind power in China:Has the golden period come[J]. Renewable Energy ,2015,81:644-657. [8] US Department of Energy, US Department of Interior. A national offshore wind strategy:Creating an offshore wind energy industry in the united states[R]. 2011. [9] Barbour Edward. An investigation into the potential of energy storage to tackle intermittency in renewable energy generation[D]. Edinburgh:The University of Edinburgh,2013. [10] Kim Young Min. Novel concepts of compressed air energy storage and thermo-electric energy storage[D]. Switzerland:École Polytechnique Fédérale De Lausanne,2012. [11] Kim Y M,Shin D G,Favrat D. Operating characteristics of constant-pressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis[J]. Energy ,2011,36:6220-6233. [12] Wolf D. Methods for design and application of adiabatic compressed air energy storage based on dynamic modeling[D]. Bochum:Ruhr-Universität Bochum,2010. [13] Abele Andris,Elkind Ethan,Intrator Jessica, et al . 2020 strategic analysis of energy storage in California[R]. California Energy Commission,2011. [14] Liu Chang(刘畅),Xu Yujie(徐玉杰),Hu Shan(胡珊),Chen Haisheng(陈海生). Techno-economic analysis of compressed air energy storage power plant[J]. Energy Storage Science and Technology (储能科学与技术),2015,4(2):158-167. [15] Bullough Chris,Gatzen Christoph,Jakiel Christoph,Koller Martin,Nowi Andreas,Zunft Stefan. Advanced adiabatic compressed air energy storage for the integration of wind energy[C]// Proceedings of the European Wind Energy Conference. London,2004. [16] European Commission. Advanced adiabatic compressed air energy storage(AA-CAES)[EB/OL]. [2005-07-28]. http://cordis.europa.eu/ project/rcn/67580_en.html. [17] RWE Power AG. Adele-adiabatic compressed-air energy storage for electricity supply[R]. Cologne,2010. [18] Fthenakis Vasilis. Enabling solar and wind energy technologies on a grand scale[R]. Compressed Air Energy Storage (CAES) Scoping Workshop. Columbia University,2008. [19] Energy Storage Power Corporation[EB/OL]. http://www.espcinc.com. [20] Keeney James Walter. Investigation of compressed air energy storage efficiency[D]. California:California Polytechnic State University,2013. [21] Zhang C,Yan B,Wieberdink J,Li P Y,Van de Ven J D,Loth E,Simon T W. Thermal analysis of a compressor for application to compressed air energy storage[J]. Applied Thermal Engineering ,2014,73:1402-1411. [22] Saadat Mohsen,Shirazi Farzad A,Li Perry Y. Modeling and control of an open accumulator compressed air energy storage (CAES) system for wind turbines[J]. Applied Energy ,2015,137:603-616. [23] Van de Ven J D,Li P Y. Liquid piston gas compression[J]. Applied Energy ,2009,86:2183-2191. [24] Iglesias A,Favrat D. Innovative isothermal oil-free co-rotating scroll compressor-expander for energy storage with first expander tests[J]. Energy Conversion and Management ,2014,85:565-572. [25] 中关村储能产业技术联盟储能专业委员会. 储能产业研究白皮书2012[R]. 北京:2012. [26] Royal Academy of Engineering. Report of UK-China workshops on the future of energy storage:Technologies and policy[R]. London:2012. [27] Liu Jia(刘佳). Numerical and experimental study on heat and cold energy storage using supercritical air[D]. Beijing:Chinese Academy of Sciences,2012. [28] Zhang Jing(张静),Li Daixin(李岱昕). Current application situation and development prospect of physical energy storage technologies[J]. Energy Storage Science and Technology (储能科学与技术),2015,4(2):153-157. [29] Luo Y X,Wang X Y. Exergy analysis on throttle reduction efficiency based on real gas equations[J]. Energy ,2010,35:100-103. [30] Wang Z W,Xiong W,Wang H,Wang Z. Exergy analysis of the pneumatic line throwing system[J]. International Journal of Exergy ,In press,2015. [31] Zaugg P. Air-storage power generating plants[J]. Brown Boveri Review ,1975,62:338-347. [32] Succar S,Williams R H. Compressed air energy storage:Theory,resources, and applications for wind power[R]. Princeton Environmental Institute Report,2008. [33] Kondoh J,Ishii I,Yamaguchi H,Murata A,Ontai K,Sakuta K,Sakuta K,Higuchi N,Sekine S,Kamimoto M. Electrical energy storage systems for energy networks[J]. Energy Conversion and Management ,2000,41(17):1863-1874. [34] Kim Y M,Favrat D. Energy and exergy analysis of a micro compressed air energy storage and air cycle heating and cooling system[J]. Energy ,2010,35:213-220. [35] Kim Y M,Favrat D,Sin D G,Cho K B. Compressed-air-storing electricity generating system and electricity generating method using the same:US,7663255[P]. 2015-06-11. [36] Lim S D,Mazzoleni A P,Park J,Ro P I,Quinlan B. Conceptual design of ocean compressed air energy storage system[C]//Oceans 2012. 2012:1-8. [37] Lim Saniel Dong. Ocean compressed air energy storage (ocaes) integrated with offshore renewable energy sources[D]. Carolina:North Carolina State University,2013. [38] Cheung B C,Carriveau R,Ting David S K. Parameters affecting scalable underwater compressed air energy storage[J]. Applied Energy ,2014,134:239-247. [39] Seymour R J. Ocean energy on-demand using underocean compressed air storage[C]//26th International Conference on Offshore Mechanics and Arctic Engineering 2007. San Diego,CA,USA,2007: 527-531. [40] Seymour R J. Undersea pumped storage for load leveling[C]// Proceedings of the 1997 Conference on California and the World Ocean. Part 1(of 2). San Diego,CA,USA,1997:158-163. [41] Purtz J. Submarine adiabatic and isobaric compressed air energy storage[R/OL]. 2010. http://www.purtz.de/caes/sm_ai_caes_folien.pdf. [42] Fiaschi D,Manfrida G,Secchi R,Tempesti D. A versatile system for offshore energy conversion including diversified storage[J]. Energy ,2012,48(1):566-576. [43] Jiang Tong(姜彤),He Xujie(何旭洁),Tong Xiao(童潇),Fu Hao(傅昊). Ocean compressed air energy storage system(海洋压缩空气储能系统):CN,103790708A[P]. 2014-05-14. [44] Slocum A H,Fennell G E,Dündar G,Hodder B G,Meredith J D,Sager M A. Ocean renewable energy storage (ORES) system:Analysis of an undersea energy storage concept[J]. Proceedings of the IEEE ,2013,101(4):906-924. [45] Hohlkugeln speichern überschüssigen windstrom[EB/OL]. [2011-04-01]. http://www.faz.net/aktuell/technik-motor/umwelt-technik/in-der- tiefe-der-meere-hohlkugeln-speichern-ueberschuessigen-windstrom-1608012.html. [46] Laing O,Laing J L N. Wind machine:US,4710100[P]. 1984-05-17. [47] Laing O,Laing J L N. Energy storage for off peak electricity:US,4873828[P]. 1989-03-31. [48] Garvey S D,Pimm A J. Thermal performance of an integrated compressed air renewable energy system[C]//Energy Storage Congress at the HUSUM International Wind Energy Fair. Husum,Germany,2010. [49] Pimm A J. Analysis of flexible fabric structures[D]. Nottingham: University of Nottingham,2011. [50] Garvey S D. The dynamics of integrated compressed air renewable energy systems[J]. Renewable Energy ,2012,39:271-292. [51] Compressed air energy storage has bags of potential[EB/OL]. [2011-04- 25]. http//www.theengineer.co.uk/in-depth/the-big-story/compressed-air- energy-storage-has-bags-of-potential/1008374.article. [52] Pimm A J,Garvey S D. Analysis of flexible fabric structures for large-scale subsea compressed air energy storage[C]//Seventh International Conference on Modern Practice in Stress and Vibration analysis. Cambridge,2009. [53] Pimm A J,Garvey S D,Drew R J. Shape and cost analysis of pressurized fabric structures for subsea compressed air energy storage[J]. Proceedings of the Institution of Mechanical Engineers , Part C : Journal of Mechanical Engineering Science ,2011,225(5):1027-1043. [54] Pimm A J,Garvey S D,Jong M. Design and testing of energy bags for underwater compressed air energy storage[J]. Energy ,2014,66:496-508 [55] Cheung B,Cao N,Carriveau R,Ting D S K. Distensible air accumulators as a means of adiabatic underwater compressed air energy storage[J]. Int. J. Environ. Stud. ,2012,69(4):566-577. [56] 中国储能网. 加拿大Hydrostor公司开发水下压缩空气储能系统[EB/OL]. [2014-07-18]. http://www.escn.com.cn/news/show-155082.html. [57] Cheung B C,Carriveau Rupp,Ting David S K. Multi-objective optimization of an underwater compressed air energy storage system using genetic algorithm[J]. Energy ,2014,74:396-404. [58] Vasel-Be-Hagh A,Carriveau R,Ting David S K. Structural analysis of an underwater energy storage accumulator[J]. Sustainable Energy Technologies and Assessments ,2015,11:165-172. [59] Vasel-Be-Hagh A,Carriveau R,Ting D S K. Numerical simulation of flow past an underwater energy storage balloon[J]. Computers & Fluids ,2013,88:272-286. [60] Vasel-Be-Hagh A,Carriveau R,Ting D S K. Flow past an accumulator unit of an underwater energy storage system:Three touching balloons in a floral configuration[J]. J. Marine Sci. Appl. ,2014,13:467-476. [61] Vasel-Be-Hagh A,Carriveau R,Ting D S K. Flow over submerged energy storage balloons in closely and widely spaced floral configurations[J]. Ocean Engineering ,2015,95:59-77. [62] Vasel-Be-Hagh A,Ting D S K,Carriveau R. Correlating flow pattern with force coefficients in air flow past a tandem unit of three circular cylinders[J]. International Journal of Fluid Mechanics Research ,2013,40(3):235-253. [63] Vasel-Be-Hagh A,Carriveau R,Ting D S K. Underwater compressed air energy storage improved through vortex hydro energy[J]. Sustainable Energy Technologies and Assessments ,2014,7:1-5. [64] Bright Energy Storage Technologies[EB/OL]. http://www.brightes. com. [65] Yuan Xiugan(袁修干),Xu Weiqiang(徐伟强). Numerical Simulation and Applications of Phase Change Thermal Storage Technologies[M]. Beijing:National Defence Industry Press,2013:2. [66] Yu Haitao(于海涛),Gao Jianmin(高建民),Chen Yao(陈瑶). Heat storage for wood drying using solar heat[J]. Energy Storage Science and Technology (储能科学与技术),2015,4(4):382-387. [67] Sharma A,Tyagi V,Chen C R,Buddhi D. Review on thermal energy storage with phase change materials and applications[J]. Renewable & Sustainable Energy Review ,2009,13(2):318-345. [68] Leng Guanghui(冷光辉),Lan Zhipeng(蓝志鹏),Ge Zhiwei(葛志伟),Qin Yue(秦月),Jiang Zhu(姜竹),Ye Feng(叶锋),Ding Yulong(丁玉龙). Recent progress in thermal energy storage materials[J]. Energy Storage Science and Technology (储能科学与技术),2015,4(2):119-130. [69] Xu Zhiguo(徐治国),Zhao Changying(赵长颖),Ji Yunan(纪育楠),Zhao Yao(赵耀). State-of-the-art of phase-change thermal storage at middle-low temperature[J]. Energy Storage Science and Technology (储能科学与技术),2014,3(3):179-190. [70] Li Chuan(李传),Ge Zhiwei(葛志伟),Jin Yi(金翼),Li Yongliang(李永亮),Ding Yulong(丁玉龙). Heat transfer behaviour of thermal energy storage components using composite phase change materials[J]. Energy Storage Science and Technology (储能科学与技术),2015,4(2):169-175. [71] Seaflex mooring system[EB/OL]. http://www.seaflex.net/index.php? option=com_content&view=article&id=27:seaflex-mooring-system &catid= 23&Itemid=10. [72] Ma Hongqi(马红旗). Research on initial penetration of torpedo anchor into seabed soil[D]. Tianjin:Tianjin University,2010. [73] Araujo J B,Machado R D,Medeiros C J. High holding power torpedo pile-Results for the long term application[C]//Proc. 23 rd Int. Conf. on Offshore Mechanics and Arctic Engineering,American Society of Mechanical Engineers. Canada:Vancouver B C,2004:417-421. [74] Wang Zuwen(王祖温).Current development of rescue and salvage Equipments[J]. Journal of Mechanical Engineering (机械工程学报),2013,49(20):91-100. [75] Vasel-Be-Hagh A,Carriveau R,Ting D S K. A balloon bursting underwater[J]. J. Fluid Mech. ,2015,769:522-540. |
[1] | Xu HU, Han JIANG, Rui ZHANG. Energy transition and hydrogen development prospects in Saudi Arabia [J]. Energy Storage Science and Technology, 2022, 11(7): 2354-2365. |
[2] | Jian LIU. Economic assessment for energy storage technologies adaptive to variable renewable energy [J]. Energy Storage Science and Technology, 2022, 11(1): 397-404. |
[3] | Jianjun CAO, Jun WANG, Liyong ZHANG, Yaqi LIU, Haoshu LING, Liang WANG, Yujie XU, Xuezhi ZHOU, Haisheng CHEN. Benefit analysis of heat storage technology applied to distributed energy system with renewable energy [J]. Energy Storage Science and Technology, 2021, 10(1): 385-392. |
[4] | Ke LU, Haishan LI, Lin MENG. Analysis of the reduction of discard rate for renewable energy power with “Generation-Grid-Load-Storage” interactive control [J]. Energy Storage Science and Technology, 2020, 9(S1): 39-44. |
[5] | Dingyu GUO, Fengjing JIANG, Zhuhan ZHANG. Research progresses in iron-based redox flow batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1668-1677. |
[6] | DING Qian, ZENG Pingliang, SUN Yikai, XU Chenjing, XU Zhenchao. A planning method for the placement and sizing of distributed energy storage system considering the uncertainty of renewable energy sources [J]. Energy Storage Science and Technology, 2020, 9(1): 162-169. |
[7] | CHEN Qimei, ZHENG Chunxiao, LI Haiying. Analysis on international development trend of energy storage technology based on bibliometrics [J]. Energy Storage Science and Technology, 2020, 9(1): 296-305. |
[8] | SUN Wenwen, XU Yujie, DING Jie, LI Ruimin, LING Haoshu, TAN Yaqian, CHEN Haisheng. An energy system for the integration of renewable energy with energy storage in a frigid plateau region [J]. Energy Storage Science and Technology, 2019, 8(4): 678-688. |
[9] | LI Ruimin, ZHANG Xinjing, XU Yujie, SUN Wenwen, ZHOU Xuezhi, GUO Cong, CHEN Haisheng. Research on optimal confguration of hybrid energy storage capacity for wind-solar generation system [J]. Energy Storage Science and Technology, 2019, 8(3): 512-522. |
[10] | YANG Junfeng, ZHENG Xiaoyu, HUI Dong, YANG Shuili, LUO Weihua, WANG Hua. Energy storage for enhancing transmission capacities and trans-regional reserves of a UHV AC/DC power grid [J]. Energy Storage Science and Technology, 2019, 8(2): 399-407. |
[11] | SU Wei, ZHANG Yi'chi, WEI Zengfu, XU Kaiqi, ZHONG Guobin. Advise on policy formulation of energy storage industry for the development [J]. Energy Storage Science and Technology, 2018, 7(S1): 26-33. |
[12] | YANG Junfeng, ZHENG Xiaoyu, HUI Dong, YANG Shuili, LUO Weihua, LI Xiaofei. Capacity demand analysis of energy storage in the sending-side of a power grid for accommodating large-scale renewables [J]. Energy Storage Science and Technology, 2018, 7(4): 698-704. |
[13] | LIU Bing1, ZHANG Jing2, LI Daixian2, NING Na2. Energy storage for peak shaving and frequency regulation in the front of meter:Progress and prospect [J]. Energy Storage Science and Technology, 2016, 5(6): 909-914. |
[14] | CAO Yi1, WANG Yonggang2, WANG Qing1, ZHANG Zhaoyong1, CHE Yong1, XIA Yongyao2, DAI Xiang1. Development of aqueous sodium ion battery [J]. Energy Storage Science and Technology, 2016, 5(3): 317-324. |
[15] | HUO Xianxu, WANG Jing, JIANG Ling, XU Qingshan. Review on key technologies and applications of hydrogen energy storage system [J]. Energy Storage Science and Technology, 2016, 5(2): 197-203. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||