Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (9): 2834-2846.doi: 10.19799/j.cnki.2095-4239.2022.0424
• Special Issue for the 10th Anniversary • Previous Articles Next Articles
Jinzhi WANG1(), Xiaolei HAN1, Chaofeng XU1, Jingwen ZHAO1,2(), Yue TANG3(), Guanglei CUI1,2()
Received:
2022-07-29
Revised:
2022-08-09
Online:
2022-09-05
Published:
2022-08-30
Contact:
Jingwen ZHAO, Yue TANG, Guanglei CUI
E-mail:wangjz@qibebt.ac.cn;zhaojw@qibebt.ac.cn;ytang86@asu.edu;cuigl@qibebt.ac.cn
CLC Number:
Jinzhi WANG, Xiaolei HAN, Chaofeng XU, Jingwen ZHAO, Yue TANG, Guanglei CUI. Research progress of sodium energy storage batteries using oxide solid-state electrolytes[J]. Energy Storage Science and Technology, 2022, 11(9): 2834-2846.
Table 1
Ionic conductivity of different oxide solid electrolytes"
类型 | 材料组成 | 离子电导率 /(S/cm) | 参考 文献 |
---|---|---|---|
β/β″-Al2O3 | β″-Al2O3 | 0.2~0.4 (300 ℃) | |
β″-Al2O3 + 0.4% MgO | 0.264 (400 ℃) | ||
β″-Al2O3 + 1% TiO2 + 10% ZrO2(质量分数) | 0.2 (350 ℃) | ||
β″-Al2O3 + 1.5% Ti + 10% Fe(摩尔分数) | 0.16 (350 ℃) | ||
β″-Al2O3 + 1% Nb2O5(质量分数) | 0.153 (300 ℃) | ||
β″-Al2O3 + 0.25% NiO(质量分数) | 0.066 (350 ℃) | ||
NA-SICON | Na3Zr2Si2PO12 | 6.7×10-4 (RT) | |
Na3.4Sc0.4Zr1.6Si2PO12 | 4×10-3 (RT) | ||
Na3.1Zr1.95Mg0.05Si2PO12 | 3.5×10-3 (RT) | ||
Na3.3Zr1.7La0.3Si2PO12 | 3.4×10-3 (RT) | ||
Na3Zr1.9Yb0.1Si2PO12 | 2.3×10-3 (RT) | ||
Na3Zr1.9Zn0.1Si2.2P0.8O12 | 5.27×10-3 (RT) |
1 | LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. |
2 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
3 | HITTINGER E, CIEZ R E. Modeling costs and benefits of energy storage systems[J]. Annual Review of Environment and Resources, 2020, 45: 445-469. |
4 | LIU J, BAO Z N, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186. |
5 | AL SHAQSI A Z, SOPIAN K, AL-HINAI A. Review of energy storage services, applications, limitations, and benefits[J]. Energy Reports, 2020, 6: 288-306. |
6 | 彭林峰, 贾欢欢, 丁庆, 等. 基于无机钠离子导体的固态钠电池研究进展[J]. 储能科学与技术, 2020, 9(5): 1370-1382. |
PENG L F, JIA H H, DING Q, et al. Research progress of solid-state sodium batteries using inorganic sodium ion conductors[J]. Energy Storage Science and Technology, 2020, 9(5): 1370-1382. | |
7 | YUNG-FANG YU YAO, KUMMER J T. Ion exchange properties of and rates of ionic diffusion in beta-alumina[J]. Journal of Inorganic and Nuclear Chemistry, 1967, 29(9): 2453-2475. |
8 | HOU W R, GUO X W, SHEN X Y, et al. Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective[J]. Nano Energy, 2018, 52: 279-291. |
9 | OSHIMA T, KAJITA M, OKUNO A. Development of sodium-sulfur batteries[J]. International Journal of Applied Ceramic Technology, 2005, 1(3): 269-276. |
10 | CHEN G, LU J, ZHOU X, et al. Solid-state synthesis of high performance Na-β″-Al2O3 solid electrolyte doped with MgO[J]. Ceram Int, 2016, 42 (14): 16055-16062. |
11 | YI E, TEMECHE E, LAINE R M. Superionically conducting β"-Al2O3 thin films processed using flame synthesized nanopowders[J]. Journal of Materials Chemistry A, 2018, 6(26): 12411-12419. |
12 | LEE S T, LEE D H, KIM J S, et al. Influence of Fe and Ti addition on properties of Na+-β/β"-alumina solid electrolytes[J]. Metals and Materials International, 2017, 23(2): 246-253. |
13 | XU D, JIANG H, LI Y, et al. The mechanical and electrical properties of Nb2O5 doped Na-β″-Al2O3 solid electrolyte[J]. The European Physical Journal Applied Physics, 2016, 74(1): 10901. |
14 | HONG Y F, HUANG P, ZHU C F. Synthesis and characterization of NiO doped beta-Al2O3 solid electrolyte[J]. Journal of Alloys and Compounds, 2016, 688: 746-751. |
15 | GOODENOUGH J B, HONG H Y P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11(2): 203-220. |
16 | ZHAO C L, LIU L L, QI X G, et al. Solid-state sodium batteries[J]. Advanced Energy Materials, 2018, 8(17): 1703012. |
17 | MA Q, GUIN M, NAQASH S, et al. Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors[J]. Chemistry of Materials, 2016, 28 (13): 4821-4828. |
18 | SONG S, DUONG H M, KORSUNSKY A M, et al. A Na+ superionic conductor for room-temperature sodium batteries[J]. Scientific Reports, 2016, 6(1): 1-10. |
19 | ZHANG Z, ZHANG Q, SHI J, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J]. Advanced Energy Materials, 2017, 7 (4): 1601196. |
20 | KHAKPOUR Z. Influence of M: Ce4+, Gd3+ and Yb3+ substituted Na3+ xZr2 -xMxSi2PO12 solid NASICON electrolytes on sintering, microstructure and conductivity[J]. Electrochimica Acta, 2016, 196: 337-347. |
21 | YANG J, LIU G, AVDEEV M, et al. Ultrastable all-solid-state sodium rechargeable batteries[J]. ACS Energy Letters, 2020, 5 (9): 2835-2841. |
22 | LI C, LI R, LIU K N, et al. NaSICON: A promising solid electrolyte for solid-state sodium batteries[J]. Interdisciplinary Materials, 2022, 1(3): 396-416. |
23 | SHEN L, DENG S G, JIANG R R, et al. Flexible composite solid electrolyte with 80 wt% Na3.4Zr1.9Zn0.1Si2.2P0.8O12 for solid-state sodium batteries[J]. Energy Storage Materials, 2022, 46: 175-181. |
24 | CAI S, TIAN H Q, LIU J H, et al. Tuning Na3Hf2Si2PO12 electrolyte surfaces by metal coating for high-rate and long cycle life solid-state sodium ion batteries[J]. Journal of Materials Chemistry A, 2022, 10(3): 1284-1289. |
25 | SESSA S D, PALONE F, NECCI A, et al. Sodium-nickel chloride battery experimental transient modelling for energy stationary storage[J]. Journal of Energy Storage, 2017, 9: 40-46. |
26 | 胡英瑛, 吴相伟, 温兆银, 等. 储能钠电池技术发展的挑战与思考[J]. 中国工程科学, 2021, 23(5): 94-102. |
HU Y Y, WU X W, WEN Z Y, et al. Challenges and thoughts on the development of sodium battery technology for energy storage[J]. Strategic Study of CAE, 2021, 23(5): 94-102. | |
27 | 李伟峰, 马素花, 沈晓冬, 等. 面向大规模电网储能的钠基电池研究进展[J]. 电源技术, 2015, 39(1): 213-216. |
LI W F, MA S H, SHEN X D, et al. Advances of sodium based batteries for large-scale energy storage of power grid[J]. Chinese Journal of Power Sources, 2015, 39(1): 213-216. | |
28 | ANDRIOLLO M, BENATO R, DAMBONE SESSA S, et al. Energy intensive electrochemical storage in Italy: 34.8 MW sodium-sulphur secondary cells[J]. Journal of Energy Storage, 2016, 5: 146-155. |
29 | VISWANATHAN L, IKUMA Y, VIRKAR A V. Transfomation toughening of β"-alumina by incorporation of zirconia[J]. Journal of Materials Science, 1983, 18(1): 109-113. |
30 | LIU L, MAEDA K, ONDA T, et al. Microstructure and improved mechanical properties of Al2O3/Ba-β-Al2O3/ZrO2 composites with YSZ addition[J]. Journal of the European Ceramic Society, 2018, 38(15): 5113-5121. |
31 | LIU L, MAEDA K, ONDA T, et al. Effect of YSZ with different Y2O3 contents on toughening behavior of Al2O3/Ba-β-Al2O3/ZrO2 composites[J]. Ceramics International, 2019, 45(14): 18037-18043. |
32 | LEE D H, LEE D G, LIM S K. Influence of MnO2 and Ta2O5/YSZ addition on properties of Na+-β/β"-alumina solid electrolytes prepared by a synthesizing-cum-sintering process[J]. Ceramics International, 2021, 47(17): 24743-24751. |
33 | ANSELL R. The chemical and electrochemical stability of beta-alumina[J]. Journal of Materials Science, 1986, 21(2): 365-379. |
34 | HU Y Y, WEN Z Y, WU X W, et al. Low-cost shape-control synthesis of porous carbon film on β"-alumina ceramics for Na-based battery application[J]. Journal of Power Sources, 2012, 219: 1-8. |
35 | HU Y Y, WEN Z Y, WU X W, et al. Nickel nanowire network coating to alleviate interfacial polarization for Na-β battery applications[J]. Journal of Power Sources, 2013, 240: 786-795. |
36 | CHANG H J, LU X C, BONNETT J F, et al. Decorating β''-alumina solid-state electrolytes with micron Pb spherical particles for improving Na wettability at lower temperatures[J]. Journal of Materials Chemistry A, 2018, 6(40): 19703-19711. |
37 | GUO X L, ZHANG L Y, DING Y, et al. Room-temperature liquid metal and alloy systems for energy storage applications[J]. Energy & Environmental Science, 2019, 12(9): 2605-2619. |
38 | LU X C, LI G S, KIM J Y, et al. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage[J]. Nature Communications, 2014, 5: 4578. |
39 | AHLBRECHT K, BUCHARSKY C, HOLZAPFEL M, et al. Investigation of the wetting behavior of Na and Na alloys on uncoated and coated Na-β"-alumina at temperatures below 150 ℃[J]. Ionics, 2017, 23(5): 1319-1327. |
40 | LI Y S, TANG Y F, LI X M, et al. In situ TEM studies of sodium polysulfides electrochemistry in high temperature Na-S nanobatteries[J]. Small, 2021, 17(23): e2100846. |
41 | 杜晨阳. 钠硫电池集流体表面Cr3C2涂层的制备与高温性能研究[D]. 长沙: 长沙理工大学, 2020.DU C Y. Preparation and high temperature performance of Cr3C2 coating on the surface of sodium sulfur battery current collector[D]. Changsha: Changsha University of Science & Technology, 2020. |
42 | WERTH J, KLEIN I, WYLIE R. The sodium chloride battery[C]// Symposium on the energy storage. Electrochemical Society, 1976: 198-205. |
43 | BIRK J R, WERTH J. Sodium chloride battery development program for load leveling [R]. ESB Technology Center, 1975. |
44 | COETZER J. A new high energy density battery system[J]. Journal of Power Sources, 1986, 18(4): 377-380. |
45 | ZHAN X W, LI M M, WELLER J M, et al. Recent progress in cathode materials for sodium-metal halide batteries[J]. Materials, 2021, 14(12): 3260. |
46 | 郭朝有, 徐海, 吴雄学. 钠-氯化镍动力电池安全性能研究[J]. 电源技术, 2014, 38(7): 1259-1261. |
GUO C Y, XU H, WU X X. Research on safety performance of sodium-nickel chloride power battery[J]. Chinese Journal of Power Sources, 2014, 38(7): 1259-1261. | |
47 | 曹佳弟.电动汽车用ZEBRA(钠/氯化镍)电池发展现状[J].电池工业,1999, 4(6):221-225. |
CAO J D. Development of ZEBRA (Na/NiCl2) battery for EV applications[J]. Battery Industry, 1999, 4(6):221-225. | |
48 | GAO X P, HU Y Y, LI Y P, et al. High-rate and long-life intermediate-temperature Na-NiCl2 battery with dual-functional Ni-carbon composite nanofiber network[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 24767-24776. |
49 | LI Y P, WU X W, WANG J Y, et al. Ni-less cathode with 3D free-standing conductive network for planar Na-NiCl2 batteries[J]. Chemical Engineering Journal, 2020, 387: 124059. |
50 | 胡英瑛, 王静宜, 吴相伟, 等. 管式ZEBRA电池的长循环性能与电压弛豫曲线的分析研究[J]. 储能科学与技术, 2020, doi: 10.19799/j.cnki.2095-4239.2022.0256. |
HU Y Y, WANG J Y, WU X W, et al. Analysis of long cycle performance and voltage relaxation curves of tubular ZEBRA batteries[J]. Energy Storage Science and Technology, 2022, doi: 10.19799/j.cnki.2095-4239.2022.0256. | |
51 | LI G S, LU X C, KIM J Y, et al. An advanced Na-FeCl2 ZEBRA battery for stationary energy storage application[J]. Advanced Energy Materials, 2015, 5(12): 1500357. |
52 | AHN C W, KIM M, HAHN B D, et al. Microstructure design of metal composite for active material in sodium nickel-iron chloride battery[J]. Journal of Power Sources, 2016, 329: 50-56. |
53 | ZHAN X W, BOWDEN M E, LU X C, et al. A low-cost durable Na-FeCl2 battery with ultrahigh rate capability[J]. Advanced Energy Materials, 2020, 10(10): 1903472. |
54 | LU X C, LI G S, KIM J Y, et al. A novel low-cost sodium-zinc chloride battery[J]. Energy & Environmental Science, 2013, 6(6): 1837. |
55 | LEE Y, KIM H J, BYUN D J, et al. Electrochemically activated Na-ZnCl2 battery using a carbon matrix in the cathode compartment[J]. Journal of Power Sources, 2019, 440: 227110. |
56 | LI G S, LU X C, COYLE C A, et al. Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries[J]. Journal of Power Sources, 2012, 220: 193-198. |
57 | KIM J, JO S H, BHAVARAJU S, et al. Low temperature performance of sodium-nickel chloride batteries with NASICON solid electrolyte[J]. Journal of Electroanalytical Chemistry, 2015, 759: 201-206. |
[1] | Yingying HU, Jingyi WANG, Xiangwei WU, Jianguo WEN, Zhaoyin WEN. Analysis of long cycle performance and voltage relaxation curves of tubular ZEBRA batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 3021-3027. |
[2] | LIU Qinghua, ZHANG Sai, JIANG Mingzhe, WANG Qiushi, XING Xueqi, YANG Hong, HUANG Feng, LEMMON P John, MIAO Ping. Study on the low-cost flow battery technologies for energy storage [J]. Energy Storage Science and Technology, 2019, 8(S1): 60-64. |
[3] | AO Xin, WU Xiangwei, HU Yingying, WEN Zhaoyin . Influence of sulfur additive on the cycling performance of sodium-nickel chloride battery and its mechanism analysis#br# #br# [J]. Energy Storage Science and Technology, 2016, 5(3): 349-354. |
[4] | HU Yingying, WEN Zhaoyin, RUI Kun, WU Xiangwei. State-of-the-art research and development status of sodium batteries [J]. Energy Storage Science and Technology, 2013, 2(2): 81-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||