1 |
LIU Y S, YANG Y Z. Form-stable phase change material based on Na2CO3 ·10H2O-Na2HPO4 ·12H2O eutectic hydrated salt/expanded graphite oxide composite: The influence of chemical structures of expanded graphite oxide[J]. Renewable Energy, 2018, 115: 734-740.
|
2 |
何雅玲. 热储能技术在能源革命中的重要作用[J]. 科技导报, 2022, 40(4): 1-2.
|
|
HE Y L. The important role of thermal energy storage technology in the energy revolution[J]. Science & Technology Review, 2022, 40(4): 1-2.
|
3 |
姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022(9): 2746-2771.
|
|
JIANG Z, ZOU B Y, CONG L, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022(9): 2746-2771.
|
4 |
LIN N Z, LI C C, ZHANG D Y, et al. Emerging phase change cold storage materials derived from sodium sulfate decahydrate[J]. Energy, 2022, 245: doi: 10.1016/j.energy.2022.123294.
|
5 |
LIN N Z, LI C C, ZHANG D Y, et al. Enhanced cold storage performance of Na2SO4 ·10H2O/expanded graphite composite phase change materials[J]. Sustainable Energy Technologies and Assessments, 2021, 48: doi: 10.1016/j.seta.2021.101596
|
6 |
童山虎, 聂彬剑, 李子潇, 等. 基于相变蓄冷技术的冷链集装箱性能研究[J]. 储能科学与技术, 2020, 9(1): 211-216.
|
|
TONG S H, NIE B J, LI Z X, et al. Investigation of the cold thermal energy storage reefer container for cold chain application[J]. Energy Storage Science and Technology, 2020, 9(1): 211-216.
|
7 |
FARAJ K, KHALED M, FARAJ J, et al. Phase change material thermal energy storage systems for cooling applications in buildings: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: doi: 10.1016/j.rser.2019.109579.
|
8 |
YIN C X, LAN J, WANG X D, et al. Shape-stable hydrated salts/polyacrylamide phase-change organohydrogels for smart temperature management[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21810-21821.
|
9 |
林酿志, 李传常. 相变储能材料及其冷链运输应用[J]. 储能科学与技术, 2021, 10(3): 1040-1050.
|
|
LIN N Z, LI C C. Phase change materials for energy storage in cold-chain transportation[J]. Energy Storage Science and Technology, 2021, 10(3): 1040-1050.
|
10 |
常洋珲, 孙志高. 十五烷微胶囊潜热型功能流体的制备及其性能[J]. 储能科学与技术, 2022, 11(10): 3123-3132.
|
|
CHANG Y H, SUN Z G. Preparation and properties of pentadecane microcapsule latent heat functional fluid[J]. Energy Storage Science and Technology, 2022, 11(10): 3123-3132.
|
11 |
李亚溪,李传常,白开皓,等.热储能技术及其工程应用[J].长沙理工大学学报(自然科学版), 2022, 19(3): 1-19.
|
|
LI Y X,LI C C,BAI K H,et al.Review of thermal energy storage technologies and its engineering applications[J].Journal of Changsha University of Science & Technology(Natural Science), 2022, 19(3): 1-19.
|
12 |
DIXIT P, REDDY V J, PARVATE S, et al. Salt hydrate phase change materials: Current state of art and the road ahead[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022.104360.
|
13 |
HAN J W, ZUO M, ZHU W Y, et al. A comprehensive review of cold chain logistics for fresh agricultural products: Current status, challenges, and future trends[J]. Trends in Food Science & Technology, 2021, 109: 536-551.
|
14 |
ZOU T, FU W W, LIANG X H, et al. Hydrophilic modification of expanded graphite to develop form-stable composite phase change material based on modified CaCl2 ·6H2O[J]. Energy, 2020, 190: doi: 10.1016/j.energy.2019.116473.
|
15 |
YU K Y, LIU Y S, JIA M J, et al. Thermal energy storage cement mortar containing encapsulated hydrated salt/fly ash cenosphere phase change material: Thermo-mechanical properties and energy saving analysis[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022.104388.
|
16 |
喻彩梅, 章学来, 华维三. 十水硫酸钠相变储能材料研究进展[J]. 储能科学与技术, 2021, 10(3): 1016-1024.
|
|
YU C M, ZHANG X L, HUA W S. Research progress of sodium sulfate decahydrate phase changematerial[J]. Energy Storage Science and Technology, 2021, 10(3): 1016-1024.
|
17 |
LI C C, ZHANG B, XIE B S, et al. Tailored phase change behavior of Na2SO4 ·10H2O/expanded graphite composite for thermal energy storage[J]. Energy Conversion and Management, 2020, 208: doi: 10.1016/j.enconman.2020.112586.
|
18 |
ZHANG C, ZHANG Z Y, YE R D, et al. Characterization of MgCl2 ·6H2O-based eutectic/expanded perlite composite phase change material with low thermal conductivity[J]. Materials Science, 2018: doi: 10.3390/ma11122369.
|
19 |
PENG S Q, HUANG J, WANG T Y, et al. Effect of fumed silica additive on supercooling, thermal reliability and thermal stability of Na2HPO4 ·12H2O as inorganic PCM[J]. Thermochimica Acta, 2019, 675: 1-8.
|
20 |
陈静, 沈艳琴, 姚一军,等. 超吸水材料的研究进展[J/OL]. 化工进展, 2022-03-21[2022-05-31]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=HGJZ20220316001&uniplatform=NZKPT&v=9r1FBu-G_dSEIBa7aioL3_Imqd8o1r1xVQ3vqHkVXh6UYHe3peVtRZUFoeUz5qQ2.
|
|
CHEN J, SHEN Y Q, YAO Y J,et al. Research progress of superabsorbent materials[J]. Progress in Chemical Industry, 2022-03-21[2022-05-31]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=HGJZ20220316001&uniplatform=NZKPT&v=9r1FBu-G_dSEIBa7aioL3_Imqd8o1r1xVQ3vqHkVXh6UYHe3peVtRZUFoeUz5qQ2.
|
21 |
BAO X H, YANG H B, XU X X,et al. Development of a stable inorganic phase change material for thermal energy storage in buildings[J]. Solar Energy Materials and Solar Cells, 2020, 208: doi: 10.1016/j.solmat.2020.110420.
|
22 |
ZOU T, XU T, CUI H Z, et al. Super absorbent polymer as support for shape-stabilized composite phase change material containing Na2HPO4 ·12H2O-K2HPO4 ·3H2O eutectic hydrated salt[J]. Solar Energy Materials and Solar Cells, 2021, 231: doi: 10.1016/j.solmat.2021.111334.
|
23 |
YU K Y, LIU Y S, SUN F Z,et al. Graphene-modified hydrate salt/UV-curable resin form-stable phase change materials: Continuously adjustable phase change temperature and ultrafast solar-to-thermal conversion[J]. Energy & Fuels, 2019, 33(8): 7634-7644
|
24 |
YU C, LIAO R P, CAI X Q, et al. Sodium polyacrylate modification method to improve the permeant performance of bentonite in chemical resistance[J]. Journal of Cleaner Production, 2019, 213: 242-250.
|
25 |
LI Y X, LI C C, LIN N Z, et al. Review on tailored phase change behavior of hydrated salt as phase change materials for energy storage[J]. Materials Today Energy, 2021, 22: doi: 10.1016/j.mtener.2021.100866.
|