Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (12): 3862-3871.doi: 10.19799/j.cnki.2095-4239.2022.0410
• Energy Storage System and Engineering • Previous Articles Next Articles
Lina WANG1,3(), Liping TAN2,3, Zhiqiang XU2,3, Xin TAN1,3, Changlong WU1,3, Hui YE4, Aikui LI4()
Received:
2022-07-19
Revised:
2022-09-04
Online:
2022-12-05
Published:
2022-12-29
Contact:
Aikui LI
E-mail:wln759@yeah.net;liaikui@dlut.edu.cn
CLC Number:
Lina WANG, Liping TAN, Zhiqiang XU, Xin TAN, Changlong WU, Hui YE, Aikui LI. Lithium battery energy storage power station primary frequency modulation design optimization and verification[J]. Energy Storage Science and Technology, 2022, 11(12): 3862-3871.
Table 2
The primary frequency modulation parameter table of electrochemical energy storage power station"
参数名称 | 赋值 | 单位 | 范围 | 备注 |
---|---|---|---|---|
基准频率 | 50 | Hz | 50~60 | — |
高频保护值(异常值) | 51 | Hz | 50~51(电网装机容量在300万千瓦及以上的,为±0.2;300万千瓦及以下的,为±0.5) | 《供电营业规则》第五十三条(3):在电力系统非正常状况下,供电频率允许偏差不应超过±1.0赫兹,采样频率偏离±1.0赫兹认为异常,闭锁调频功能 |
低频保护值(异常值) | 49 | Hz | 49~50 | |
频率死区上限(退出值) | 50.05 | Hz | 50.05~50.2 | 基于储能电站装机容量、电网容量、储能寿命确定频率调节死区,避免频率调节反复动作 |
频率死区下限(退出值) | 49.95 | Hz | 49.95~49.8 | |
上调触发频率 | 50.1 | Hz | 50.1~50.2 | 把触发频率偏离值大于死区频率值,降低储能电站的频繁出力, 建设储能退出时的冲击 |
下调触发频率 | 49.9 | Hz | 49.9~49.8 | |
调差率 | 0.025% | — | 0.5%~3% | — |
1 | 时智勇, 王彩霞, 胡静. 独立新型储能电站价格形成机制及成本疏导优化方法[J/OL]. 储能科学与技术, 2022-08-22[2022-09-01]. doi: 10.19799/j.cnki.2095-4239.2022.0367. |
SHI Z Y, WANG C X, HU J. Price formation mechanism and cost diversion optimization method of independent new energy storage power station[J/OL]. Energy Storage Science and Technology, 2022-08-22[2022-09-01]. doi: 10.19799/j.cnki.2095-4239.2022.0367. | |
2 | 戴汉扬, 肖雄, 宋新立, 等. 适用于大电网动态仿真的电化学储能电站多场景仿真建模及应用研究[J/OL]. 电网技术, 2022-08-18[2022-09-01]. doi: 10.13335/j.1000-3673.pst.2022.1034. |
DAI H Y, XIAO X, SONG X L, et al. Multi Scenarios Simulation Modeling and Applications of Battery Energy Storage Station for Bulk Power System Dynamic Simulation[J/OL]. Power System Technology, 2022-08-18[2022-09-01]. doi: 10.13335/j.1000-3673.pst.2022.1034. | |
3 | 国家市场监督管理总局, 国家标准化管理委员会. 电力系统安全稳定导则: GB 38755—2019[S]. 北京: 中国标准出版社, 2019. |
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Code on security and stability for power system: GB 38755—2019[S]. Beijing: Standards Press of China, 2019. | |
4 | 李建林, 屈树慷, 马速良, 等. 电池储能系统辅助电网调频控制策略研究[J/OL]. 太阳能学报, 2022-08-08[2022-09-01]. doi: 10.19912/j.0254-0096.tynxb.2021-1297. |
LI J L, QU S K, MA S L, et al. Research on frequency modulation control strategy of auxiliary power grid in battery energy storage system[J/OL]. Acta Energiae Solaris Sinica, 2022-08-08[2022-09-01]. doi: 10.19912/j.0254-0096.tynxb.2021-1297. | |
5 | 史昭娣, 黄越辉, 李湃, 等. 计及深度信念网络场景生成的风/光/储协同优化规划方法[J/OL]. 电网技术, 2022-08-18[2022-09-01]. doi: 10.13335/j.1000-3673.pst.2022.1193. |
SHI Z D, HUANG Y H, LI P, et al. Collaborative optimization planning method for wind/pv/storage based on scenarios generated by deep belief network[J/OL]. Power System Technology, 2022-08-18[2022-09-01]. doi: 10.13335/j.1000-3673.pst.2022.1193. | |
6 | 国家市场监督管理总局, 国家标准化管理委员会. 并网电源一次调频技术规定及试验导则: GB/T 40595—2021[S]. 北京: 中国标准出版社, 2021. |
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Guide for technology and test on primary frequency control of grid-connected power resource: GB/T 40595—2021[S]. Beijing: Standards Press of China, 2021. | |
7 | 国家市场监督管理总局, 国家标准化管理委员会. 并网发电厂辅助服务导则: GB/T 37134—2018[S]. 北京: 中国标准出版社, 2018. |
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. Guide for ancillary service of grid connected power plants: GB/T 37134—2018[S]. Beijing: Standards Press of China, 2018. | |
8 | 温可瑞, 李卫东, 孙乔, 等. 用户侧分布式储能参与一次调频的日内前瞻-值函数近似策略[J]. 电力系统自动化, 2022, 46(20): 33-42. |
WEN K R, LI W D, SUN Q, et al. Intra-day lookahead-value function approximation strategy of user-side distributed energy storage participating in primary frequency regulation[J]. Automation of Electric Power Systems, 2022, 46(20): 33-42. | |
9 | FANG C X, TANG Y C, YE R, et al. Adaptive control strategy of energy storage system participating in primary frequency regulation[J]. Processes, 2020, 8(6): 687. |
10 | 李庆成. 电池储能辅助火电机组调频研究[D]. 昆明: 昆明理工大学, 2020. |
LI Q C. Research on frequency modulation of thermal power unit assisted by battery energy storage[D]. Kunming: Kunming University of Science and Technology, 2020. | |
11 | 傅质馨, 张晶晶, 崔晓丹, 等. 储能支撑光伏参与电网一次调频的优化控制策略研究[J]. 可再生能源, 2021, 39(11): 1530-1540. |
FU Z X, ZHANG J J, CUI X D, et al. Research on optimal control strategy of photovoltaic system supported by energy storage participating in primary frequency regulation of power grid[J]. Renewable Energy Resources, 2021, 39(11): 1530-1540. | |
12 | 国家市场监督管理总局, 国家标准化管理委员会. 电力系统电化学储能系统通用技术条件: GB/T 36558—2018[S]. 北京: 中国标准出版社, 2018. |
State Administration for Market Regulation, Standardization Administration of the People's Republic of China. General technical requirements for electrochemical energy storage system in power system: GB/T 36558—2018[S]. Beijing: Standards Press of China, 2018. | |
13 | 郄朝辉, 黄慧, 李威, 等. 周期通信对储能系统参与电网调频的影响分析[J]. 电力系统保护与控制, 2020, 48(1): 41-47. |
QIE Z H, HUANG H, LI W, et al. Analysis of the influence of periodic communication on the participation of energy storage system in power grid frequency modulation[J]. Power System Protection and Control, 2020, 48(1): 41-47. | |
14 | 郑佳滨, 刘明波, 谢敏. 求解含储能装置的微电网动态最优潮流的对偶半定规划方法[J]. 电网技术, 2017, 41(9): 2879-2887. |
ZHENG J B, LIU M B, XIE M. Dual semi-definite programming method for dynamic optimal power flow with energy storage device[J]. Power System Technology, 2017, 41(9): 2879-2887. | |
15 | WEI Z X, HAN X J, LI J R. State of health assessment for echelon utilization batteries based on deep neural network learning with error correction[J]. Journal of Energy Storage, 2022, 51: doi: 10.1016/j.est.2022.104428. |
16 | 李忠文, 吴龙, 程志平, 等. 光储系统参与微电网频率调节的模糊自适应滑模控制[J]. 高电压技术, 2022, 48(6): 2065-2076. |
LI Z W, WU L, CHENG Z P, et al. Fuzzy adaptive sliding mode control of photovoltaic and storage systems for providing frequency regulation of microgrid[J]. High Voltage Engineering, 2022, 48(6): 2065-2076. | |
17 | ZHAO Y Y, DENG B Y, CHEN H, et al. An evaluation strategy of energy storage construction for industrial users based on K-means clustering algorithm[C]//2019 Computing, Communications and IoT Applications (ComComAp). Shenzhen, China. IEEE, : 396-401. |
18 | 曾正, 李晓玲, 曹琳, 等. 开尔文连接对功率模块并联均流影响的对比评估[J]. 中国电机工程学报, 2019, 39(18): 5480-5489, 5596. |
ZENG Z, LI X L, CAO L, et al. Evaluation on current sharing of power module affected by kelvin connection[J]. Proceedings of the CSEE, 2019, 39(18): 5480-5489, 5596. | |
19 | 孙建平. 变流器变开关频率IGBT模块热特性研究[D]. 成都: 电子科技大学, 2022. |
SUN J P. Research on thermal characteristics of IGBT module for inverter with variable switching frequency[D]. Chengdu: University of Electronic Science and Technology of China, 2022. | |
20 | 张军, 管勃, 杜雄, 等. 基于寿命消耗分布规律的风电变流器IGBT模块热管理控制策略[J]. 中国电机工程学报, 2022, 42(3): 1103-1113. |
ZHANG J, GUAN B, DU X, et al. A thermal management control strategy for IGBT module in the wind power converter based on the distribution characteristics of consumed lifetime[J]. Proceedings of the CSEE, 2022, 42(3): 1103-1113. | |
21 | 盛况, 董泽政, 吴新科. 碳化硅功率器件封装关键技术综述及展望[J]. 中国电机工程学报, 2019, 39(19): 5576-5584, 5885. |
SHENG K, DONG Z Z, WU X K. Review and prospect of key packaging technologies for silicon carbide power devices[J]. Proceedings of the CSEE, 2019, 39(19): 5576-5584, 5885. |
[1] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
[2] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[3] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[4] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[5] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
[6] | Liping HUO, Weiling LUAN, Zixian ZHUANG. Development trend of lithium-ion battery safety technology for energy storage [J]. Energy Storage Science and Technology, 2022, 11(8): 2671-2680. |
[7] | Kangyong YIN, Fengbo TAO, Wei LIANG, Zhiyuan NIU. Simulation of thermal runaway gas explosion in double-layer prefabricated cabin lithium iron phosphate energy storage power station [J]. Energy Storage Science and Technology, 2022, 11(8): 2488-2496. |
[8] | Tao SUN, Tengteng SHEN, Xin LIU, Dongsheng REN, Jinhai LIU, Yuejiu ZHENG, Luyan WANG, Languang LU, Minggao OUYANG. Application of titration gas chromatography technology in the quantitative detection of lithium plating in Li-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2564-2573. |
[9] | Yong XIAO, Jun XU. Risk assessment of battery safe operation in energy storage power station based on combination weighting and TOPSIS [J]. Energy Storage Science and Technology, 2022, 11(8): 2574-2584. |
[10] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[11] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[12] | Zhicheng CAO, Kaiyun ZHOU, Jiali ZHU, Gaoming LIU, Min YAN, Shun TANG, Yuancheng CAO, Shijie CHENG, Weixin ZHANG. Patent analysis of fire-protection technology of lithium-ion energy storage system [J]. Energy Storage Science and Technology, 2022, 11(8): 2664-2670. |
[13] | Yue ZHANG, Depeng KONG, Ping PING. Performance and design optimization of a cold plate for inhibiting thermal runaway propagation of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2022, 11(8): 2432-2441. |
[14] | Chengshan XU, Borui LU, Mengqi ZHANG, Huaibin WANG, Changyong JIN, Minggao OUYANG, Xuning FENG. Study on thermal runaway gas evolution in the lithium-ion battery energy storage cabin [J]. Energy Storage Science and Technology, 2022, 11(8): 2418-2431. |
[15] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||