1 |
公安部交通管理局. 2021年全国机动车保有量达3.95亿新能源汽车同比增59.25% [EB/OL]. [2022-01-11]. https://www.mps.gov.cn/n2254314/n6409334/c8322353/content.html.
|
2 |
徐懋, 刘东, 王德钊. 退役磷酸铁锂动力电池梯次利用分析[J]. 电源技术, 2020, 44(8): 1227-1230.
|
|
XU M, LIU D, WANG D Z. Analysis on echelon utilization of retired lithium iron phosphate power battery[J]. Chinese Journal of Power Sources, 2020, 44(8): 1227-1230.
|
3 |
马天翼, 王伟哲, 林春景, 等. 磷酸铁锂电池多阶段利用可行性研究[J]. 储能科学与技术, 2022, 11(1): 119-126.
|
|
MA T Y, WANG W Z, LIN C J, et al. Feasibility of multi-stage reuse of commercial LiFePO4/C batteries[J]. Energy Storage Science and Technology, 2022, 11(1): 119-126.
|
4 |
常泽宇, 张之琦, 张晓东, 等. 基于数据驱动的动力电池健康状态评估平台[J]. 储能科学与技术, 2022, 11(6): 1847-1853.
|
|
CHANG Z Y, ZHANG Z Q, ZHANG X D, et al. A data-driven state of health(SOH)assessment platform for vehicle power batteries[J]. Energy Storage Science and Technology, 2022, 11(6): 1847-1853.
|
5 |
张孝远, 张金浩, 蒋亚俊. 基于改进TCN模型的动力电池健康状态评估[J]. 储能科学与技术, 2022, 11(5): 1617-1626.
|
|
ZHANG X Y, ZHANG J H, JIANG Y J. Power battery health evaluation based on improved TCN model[J]. Energy Storage Science and Technology, 2022, 11(5): 1617-1626.
|
6 |
戴彦文, 于艾清. 基于健康特征参数的CNN-LSTM&GRU组合锂电池SOH估计[J]. 储能科学与技术, 2022, 11(5): 1641-1649.
|
|
DAI Y W, YU A Q. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation[J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649.
|
7 |
耿萌萌, 范茂松, 杨凯, 等. 基于EIS和神经网络的退役电池SOH快速估计[J]. 储能科学与技术, 2022, 11(2): 673-678.
|
|
GENG M M, FAN M S, YANG K, et al. Fast estimation method for state-of-health of retired batteries based on electrochemical impedance spectroscopy and neural network[J]. Energy Storage Science and Technology, 2022, 11(2): 673-678.
|
8 |
SWAIN B. Recovery and recycling of lithium: A review[J]. Separation and Purification Technology, 2017, 172: 388-403.
|
9 |
周伟, 符冬菊, 刘伟峰, 等. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864.
|
|
ZHOU W, FU D J, LIU W F, et al. Research progress on recycling technology of waste lithium iron phosphate power battery[J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864.
|
10 |
郑永强, 吴越, 张盼盼, 等. 基于多分支拓扑的梯次利用储能系统电池同期退役协同控制策略[J]. 储能科学与技术, 2021, 10(6): 2283-2292.
|
|
ZHENG Y Q, WU Y, ZHANG P P, et al. Research on collaborative control strategy for simultaneous decommissioning based on multi-branch PCS topology of ESS using second-life EV batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2283-2292.
|
11 |
LASIA A. Electrochemical impedance spectroscopy and its applications[M]//Modern Aspects of Electrochemistry. Boston: Kluwer Academic Publishers, 2005: 143-248.
|
12 |
WANG S S, ZHANG J B, GHARBI O, et al. Electrochemical impedance spectroscopy[J]. Nature Reviews Methods Primers, 2021, 1: 41.
|
13 |
王盼. 电化学阻抗谱在锂离子电池中的应用[J]. 电源技术, 2020, 44(12): 1847-1850, 1854.
|
|
WANG P. Application of electrochemical impedance spectroscopy in lithium ion batteries[J]. Chinese Journal of Power Sources, 2020, 44(12): 1847-1850, 1854.
|
14 |
李琛坤, 王帅, 黄俊. 电化学阻抗谱物理模型求解方法[J]. 储能科学与技术, 2022, 11(3): 912-920.
|
|
LI C K, WANG S, HUANG J. Method for solving physical model of electrochemical impedance spectroscopy[J]. Energy Storage Science and Technology, 2022, 11(3): 912-920.
|
15 |
贾铮, 戴长松, 陈玲. 电化学测量方法[M]. 北京: 化学工业出版社, 2006.
|
|
JIA Z, DAI C S, CHEN L. Electrochemical measurement method[M]. Beijing: Chemical Industry Press, 2006.
|
16 |
吴敬华, 杨菁, 刘高瞻, 等. 固态锂电池十年(2011—2021)回顾与展望[J]. 储能科学与技术, 2022, 11(9): 2713-2745.
|
|
WU J H, YANG J, LIU G Z, et al. Review and prospective of solid-state lithium batteries in the past decade(2011—2021)[J]. Energy Storage Science and Technology, 2022, 11(9): 2713-2745.
|
17 |
FENG X M, LIU Q Y, ZHENG J Y, et al. Poly(ethylene oxide)-ethylene carbonate solid binary electrolyte with higher conductivity, lower operating temperature and fully impregnated separator for all solid-state lithium ion batteries[J]. Composites Communications, 2022, 29: doi: 10.1016/j.coco.2021.101026.
|