Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (3): 768-776.doi: 10.19799/j.cnki.2095-4239.2022.0612
• Energy Storage Materials and Devices • Previous Articles Next Articles
Qihui LIU(), Yanpeng FU(), Jing LUO, Tao FANG, Zhicong SHI
Received:
2022-10-20
Revised:
2022-11-03
Online:
2023-03-05
Published:
2023-04-14
Contact:
Yanpeng FU
E-mail:2112002047@mail2.gdut.edu.cn;fuyanpeng@gdut.edu.cn
CLC Number:
Qihui LIU, Yanpeng FU, Jing LUO, Tao FANG, Zhicong SHI. Low-temperature solution synthesis of K+ preintercalated delta-MnO2 for high performance Zn-ion battery[J]. Energy Storage Science and Technology, 2023, 12(3): 768-776.
1 | YOSHINO A. The birth of the lithium-ion battery[J]. Angewandte Chemie (International Ed in English), 2012, 51(24): 5798-5800. |
2 | ZHU C B, USISKIN R E, YU Y, et al. The nanoscale circuitry of battery electrodes[J]. Science, 2017, 358(6369): doi: 10.1126/science.aao2808. |
3 | ZAMPARDI G, LA MANTIA F. Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries[J]. Nature Communications, 2022, 13(1): 687. |
4 | ZHANG T S, TANG Y, GUO S, et al. Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review[J]. Energy & Environmental Science, 2020, 13(12): 4625-4665. |
5 | BLANC L E, KUNDU D P, NAZAR L F. Scientific challenges for the implementation of Zn-ion batteries[J]. Joule, 2020, 4(4): 771-799. |
6 | KUNDU D P, ADAMS B D, DUFFORT V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.119. |
7 | MATHEW V, SAMBANDAM B, KIM S, et al. Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: A focused view on performance, mechanism, and developments[J]. ACS Energy Letters, 2020, 5(7): 2376-2400. |
8 | XIONG T, ZHANG Y X, LEE W S V, et al. Defect engineering in Manganese-based oxides for aqueous rechargeable zinc-ion batteries: A review[J]. Advanced Energy Materials, 2020, 10(34): doi:10.1002/aenm.202001769. |
9 | LI Y, LI X, DUAN H, et al. Aerogel-structured MnO2 cathode assembled by defect-rich ultrathin nanosheets for zinc-ion batteries[J]. Chemical Engineering Journal, 2022, 441: doi:10.1016/j.cej.2022.136008. |
10 | CHEN X D, ZHANG H, LIU J H, et al. Vanadium-based cathodes for aqueous zinc-ion batteries: Mechanism, design strategies and challenges[J]. Energy Storage Materials, 2022, 50: 21-46. |
11 | WAN F, NIU Z Q. Design strategies for vanadium-based aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition, 2019, 58(46): 16358-16367. |
12 | YI H C, QIN R Z, DING S X, et al. Structure and properties of Prussian blue analogues in energy storage and conversion applications[J]. Advanced Functional Materials, 2021, 31(6): doi:10.1002/adfm.202006970. |
13 | JIA X X, LIU C F, NEALE Z G, et al. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry[J]. Chemical Reviews, 2020, 120(15): 7795-7866. |
14 | HAN C P, LI H F, SHI R Y, et al. Organic quinones towards advanced electrochemical energy storage: Recent advances and challenges[J]. Journal of Materials Chemistry A, 2019, 7(41): 23378-23415. |
15 | LI X, LI Y, XIE S Y, et al. Zinc-based energy storage with functionalized carbon nanotube/polyaniline nanocomposite cathodes[J]. Chemical Engineering Journal, 2022, 427: doi: 10.1016/j.cej.2021.131799. |
16 | WANG D H, WANG L F, LIANG G J, et al. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery[J]. ACS Nano, 2019, 13(9): 10643-10652. |
17 | CHAO D L, ZHOU W H, YE C, et al. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage[J]. Angewandte Chemie (International Ed in English), 2019, 58(23): 7823-7828. |
18 | ZHONG C, LIU B, DING J, et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-Manganese dioxide batteries[J]. Nature Energy, 2020, 5(6): 440-449. |
19 | ZHAO Y L, ZHU Y H, ZHANG X B. Challenges and perspectives for Manganese-based oxides for advanced aqueous zinc-ion batteries[J]. InfoMat, 2020, 2(2): 237-260. |
20 | WANG G L, WANG Y L, GUAN B Y, et al. Hierarchical K-birnessite-MnO2 carbon framework for high-energy-density and durable aqueous zinc-ion battery[J]. Small (Weinheim an Der Bergstrasse, Germany), 2021, 17(45): doi: 10.1002/smll.202104557. |
21 | SUN T J, NIAN Q S, ZHENG S B, et al. Layered Ca0.28MnO2 ·0.5H2O as a high performance cathode for aqueous zinc-ion battery[J]. Small, 2020, 16(23): doi: 10.1002/smll.202000597. |
22 | ALFARUQI M H, ISLAM S, PUTRO D Y, et al. Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery[J]. Electrochimica Acta, 2018, 276: 1-11. |
23 | NAM K W, KIM H, CHOI J H, et al. Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries[J]. Energy & Environmental Science, 2019, 12(6): 1999-2009. |
24 | ZHAO Q H, SONG A Y, DING S X, et al. Preintercalation strategy in Manganese oxides for electrochemical energy storage: Review and prospects[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(50): doi: 10.1002/adma.202002450. |
25 | FANG G Z, ZHU C Y, CHEN M H, et al. Suppressing Manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery[J]. Advanced Functional Materials, 2019, 29(15): doi: 10.1002/adfm.201808375. |
26 | HUANG J H, WANG Z, HOU M Y, et al. Polyaniline-intercalated Manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J]. Nature Communications, 2018, 9: 2906. |
27 | ZHANG Y, DENG S J, PAN G X, et al. Introducing oxygen defects into phosphate ions intercalated Manganese dioxide/vertical multilayer graphene arrays to boost flexible zinc ion storage[J]. Small Methods, 2020, 4(6): doi: 10.1002/smtd.201900828. |
28 | ZHANG H Z, LIU Q Y, WANG J, et al. Boosting the Zn-ion storage capability of birnessite Manganese oxide nanoflorets by La3+ intercalation[J]. Journal of Materials Chemistry A, 2019, 7(38): 22079-22083. |
29 | CHEN K F, PAN W, XUE D F. Phase transformation of Ce3+-doped MnO2 for pseudocapacitive electrode materials[J]. The Journal of Physical Chemistry C, 2016, 120(36): 20077-20081. |
30 | HU P, YAN M Y, WANG X P, et al. Single-nanowire electrochemical probe detection for internally optimized mechanism of porous graphene in electrochemical devices[J]. Nano Letters, 2016, 16(3): 1523-1529. |
31 | LIU L Y, WU Y, HUANG L, et al. Alkali ions pre-intercalated layered MnO2 nanosheet for zinc-ions storage[J]. Advanced Energy Materials, 2021,11: doi:10.1002/aenm.202101287. |
32 | VARDHAN PALEM V, BALARABE IDRIS M, SUBRAMANIAM T, et al. The charge storage mechanism of MnCO3 in aqueous electrolytes[J]. ChemistrySelect, 2020, 5(17): 5316-5322. |
33 | EL-MALLAWANY R A. Theoretical and experimental IR spectra of binary rare earth tellurite glasses—1[J]. Infrared Physics, 1989, 29(2/3/4): 781-785. |
34 | XIE Q X, CHENG G, XUE T, et al. Alkali ions pre-intercalation of δ-MnO2 nanosheets for high-capacity and stable Zn-ion battery[J]. Materials Today Energy, 2022, 24: doi: 10.1016/j.mtener.2021. 100934. |
35 | BAYAGUUD A, LUO X, FU Y P, et al. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries[J]. ACS Energy Letters, 2020, 5(9): 3012-3020. |
[1] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
[2] | Fang DI, Haolin YANG, Tianyu XING, Xiaoping ZHAO, Yanqiu ZHANG, Lixiang LI, Baigang AN. Nanocarbons modified LiFePO4 and its electrochemical performance [J]. Energy Storage Science and Technology, 2020, 9(S1): 7-12. |
[3] | MEHVISH Tariq, CHENG Xiaomin, LI yuanyuan, HUANG Yi, LI Ge, WANG Xiuli, ZHU Shilei, WAQAR Khan. Influence of carbon nanotubes and nano-alumina on the thermal performance of nitrate phase change materials for thermal storage [J]. Energy Storage Science and Technology, 2018, 7(S1): 47-53. |
[4] | XIA Yu, WANG Shuangshaung, WANG Yifei. Applications of carbon nanotubes in the lithium-ion batteries [J]. Energy Storage Science and Technology, 2016, 5(4): 422-429. |
[5] | ZHANG Xiyao, NIU Jianlei, WU Jianyong, ZHANG Shuo. Suppression of supercooling of PCM-water emulsions using nano-additives [J]. Energy Storage Science and Technology, 2014, 3(2): 133-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||