[1] KEARNEY D, HERRMANN U, NAVA P, et al. Assessment of a molten salt heat transfer fluid in a parabolic trough solar field[J]. Journal of Solar Energy Engineering, 2003, 125(2):293-299.
[2] AL G J J. Physical properties data compilations relevant to energy storage[M]. U.S. Dept of Commerce, N, 1978.
[3] ARAKI N, MATSUURA M, MAKINO A, et al. Measurement of thermophysical properties of molten salts:Mixtures of alkaline carbonate salts[J]. International Journal of Thermophysics, 1988, 9(6):1071-1078
[4] MAXWELL J C. A treatise on electricity and magnetism[M]. London:Publishers to the University of Oxford, 1892.
[5] CHOI S U. Enhancing thermal conductivity of fluids with nano-particles[J]. Asme Fed, 1995, 231(1):99-105.
[6] XIE H, WANG J, XI T, et al. Thermal conductivity enhancement of suspensions containing nanosized alumina particles[J]. Journal of Applied Physics, 2002, 91(7):4568-4572.
[7] HONG T K, YANG H S, CHOI C J. Study of the enhanced thermal conductivity of fe nanofluids[J]. Journal of Applied Physics, 2005, 97(6):280-441.
[8] LI C H, PETERSON G P. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)[J]. Journal of Applied Physics, 2006, 99(8):doi:10.1063/1.2191571.
[9] EASTMAN J A, CHOI S U S, LI S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles[J]. Applied Physics Letters, 2001, 78(6):718-720.
[10] EASTMAN J A, CHOI U S, LI S, et al. Enhanced thermal conductivity through the development of nanofluids[J]. MRS Proceedings, 1996:457.
[11] XUAN Y, QIANG L. Heat transfer enhancement of nanofluids[J]. Journal of Engineering Thermophysics, 2000, 21(1):58-64.
[12] MURSHED S M S, LEONG K C, YANG C. Enhanced thermal conductivity of TiO2-water based nanofluids[J]. International Journal of Thermal Sciences, 2005, 44(4):367-373.
[13] CHOI S U S, ZHANG Z G, YU W, et al. Anomalous thermal conductivity enhancement in nanotube suspensions[J]. Applied Physics Letters, 2001, 79(14):2252-2254.
[14] HYUNUKKANG, SUNGHYUNKIM, JEMYUNGOH. Estimation of thermal conductivity of nanofluid using experimental effective particle volume[J]. Experimental Heat Transfer, 2006, 19(3):181-191.
[15] PATEL H E, DAS S K, SUNDARARAJAN T, et al. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids:Manifestation of anomalous enhancement and chemical effects[J]. Applied Physics Letters, 2003, 83(14):2931-2933.
[16] NAMBURU P K, KULKARNI D P, DANDEKAR A, et al. Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids[J]. Micro & Nano Letters Iet, 2007, 2(3):67-71.
[17] VAJJHA R S, DAS D K. Specific heat measurement of three nanofluids and development of new correlations[J]. Journal of Heat Transfer, 2009, 131(7):81-90.
[18] BETTS M. The effects of nanoparticle augmentation of nitrate thermal storage materials for use in concentrating solar power applications[J]. Territoire En Mouvement, 2011, 22:98-111.
[19] ZHOU L P, WANG B X, PENG X F, et al. On the specific heat capacity of cuo nanofluid[J]. Adv. Mech. Eng., 2010, 2:1652-1660.
[20] BRIDGES N J, VISSER A E, FOX E B. Potential of nanoparticle-enhanced ionic liquids (neils) as advanced heat-transfer fluids[J]. Energy & Fuels, 2011, 25(10):4862-4864.
[21] MALIK D R. Evaluation of composite alumina nanoparticle and nitrate eutectic materials for use in concentrating solar power plants[D]. College Station:Texas A&M University, 2010,
[22] MING X H, PAN C. Optimal concentration of alumina nanoparticles in molten hitec salt to maximize its specific heat capacity[J]. International Journal of Heat & Mass Transfer, 2014, 70(3):174-184.
[23] CASTRO C, MURSHED S M, LOUREN O M, et al. Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids[J]. International Journal of Thermal Sciences, 2012, 62:34-39.
[24] NELSON I C, BANERJEE D, PONNAPPAN R. Flow loop experiments using polyalphaolefin nanofluids[J]. Journal of Thermophysics & Heat Transfer, 2009, 23(4):752-761.
[25] WANG B X, ZHOU L P, PENG X F. Surface and size effects on the specific heat capacity of nanoparticles[J]. International Journal of Thermophysics, 2006, 27(1):139-151.
[26] LAN W, TAN Z, MENG S, et al. Enhancement of molar heat capacity of nanostructured Al2O3[J]. Journal of Nanoparticle Research, 2001, 3(5/6):483-487.
[27] SNOW C L, LEE C R, SHI Q, et al. Size-dependence of the heat capacity and thermodynamic properties of hematite (α-feo)[J]. J. Chem. Thermodyn., 2010, 42(9):1142-1151.
[28] BUONGIORNO J. Convective transport in nanofluids[J]. Journal of Heat Transfer, 2006, 128(3):240-250.
[29] CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Effect of nanoparticles on heat capacity of nanofluids based on molten salts as pcm for thermal energy storage[J]. Nanoscale Res. Lett., 2013, 8(1):448.
[30] ZHANG L D, CHEN X, WU Y T, et al. Effect of nanoparticle dispersion on enhancing the specific heat capacity of quaternary nitrate for solar thermal energy storage application[J]. Solar Energy Materials & Solar Cells, 2016, 157:808-813.
[31] JO B, BANERJEE D. Study of high temperature nanofluids using carbon nanotubes (cnt) for solar thermal storage applications[C]//Proceedings of the ASME 2010 International Conference on Energy Sustainability, 2010.
[32] LU M C, HUANG C H. Specific heat capacity of molten salt-based alumina nanofluid[J]. Nanoscale Res. Lett., 2013, 8(1):292.
[33] EVANS W, PRASHER R, FISH J, et al. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids[J]. International Journal of Heat & Mass Transfer, 2008, 51(5):1431-1438.
[34] XUAN Y, LI Q, HU W. Aggregation structure and thermal conductivity of nanofluids[J]. Aiche Journal, 2003, 49(4):1038-1043.
[35] ZHU H, ZHANG C, LIU S, et al. Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids[J]. Applied Physics Letters, 2006, 89(2):doi:10.1063/1.2221905.
[36] CHIERUZZI M, MILIOZZI A, CRESCENZI T, et al. A new phase change material based on potassium nitrate with silica and alumina nanoparticles for thermal energy storage[J]. Nanoscale Res. Lett., 2015, 10(1):doi:http://doi.org/10.1186/S11671-015-0984-2.
[37] YU W, CHOI S U S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids:A renovated maxwell model[J]. Journal of Nanoparticle Research, 2004, 6(4):355-361.
[38] LING L, ZHANG Y, MA H, et al. Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids[J]. Journal of Nanoparticle Research, 2010, 12(3):811-821.
[39] SHIN D, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat & Mass Transfer, 2011, 54(5/6):1064-1070.
[40] TIZNOBAIK H, SHIN D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J]. International Journal of Heat & Mass Transfer, 2013, 57(2):542-548.
[41] PANG C, LEE J W, HONG H, et al. Heat conduction mechanism in nanofluids[J]. Journal of Mechanical Science & Technology, 2014, 28(7):2925-2936.
[42] JO B, BANERJEE D. Enhanced specific heat capacity of molten salt-based carbon nanotubes nanomaterials[J]. Journal of Heat Transfer, 2015, 137(9):doi:10.1115/1.4030226. |