1 |
喻航, 张英, 徐超航, 等. 锂电储能系统热失控防控技术研究进展[J]. 储能科学与技术, 2022, 11(8): 2653-2663.
|
|
YU H, ZHANG Y, XU C H, et al. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems[J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663.
|
2 |
于昌海, 吴继平, 杨海晶, 等. 规模化储能系统参与电网调频的控制策略研究[J]. 电力工程技术, 2019, 38(4): 68-73, 105.
|
|
YU C H, WU J P, YANG H J, et al. Frequency regulation strategy for power grid incorporating large-scale energy storage[J]. Electric Power Engineering Technology, 2019, 38(4): 68-73, 105.
|
3 |
蔡霁霖, 徐青山, 袁晓冬, 等. 基于风电消纳时序场景的电池储能系统配置策略[J]. 高电压技术, 2019, 45(3): 993-1001.
|
|
CAI J L, XU Q S, YUAN X D, et al. Configuration strategy of large-scale battery storage system orienting wind power consumption based on temporal scenarios[J]. High Voltage Engineering, 2019, 45(3): 993-1001.
|
4 |
MAO B B, HUANG P F, CHEN H D, et al. Self-heating reaction and thermal runaway criticality of the lithium ion battery[J]. International Journal of Heat and Mass Transfer, 2020, 149: doi: 10.1016/j.ijheatmasstransfer.2019.119178.
|
5 |
王爽, 杜志明, 张泽林, 等. 锂离子电池安全性研究进展[J]. 工程科学学报, 2018, 40(8): 901-909.
|
|
WANG S, DU Z M, ZHANG Z L, et al. Research progress on safety of lithium-ion batteries[J]. Chinese Journal of Engineering, 2018, 40(8): 901-909.
|
6 |
HESSE H, SCHIMPE M, KUCEVIC D, et al. Lithium-ion battery storage for the grid—a review of stationary battery storage system design tailored for applications in modern power grids[J]. Energies, 2017, 10(12): doi: 10.3390/en10122107.
|
7 |
CRABTREE G, KÓCS E, TRAHEY L. The energy-storage frontier: Lithium-ion batteries and beyond[J]. MRS Bulletin, 2015, 40(12): 1067-1078.
|
8 |
骆妮, 李建林. 储能技术在电力系统中的研究进展[J]. 电网与清洁能源, 2012, 28(2): 71-79.
|
|
LUO N, LI J L. Research progress of energy storage technology in power system[J]. Power System and Clean Energy, 2012, 28(2): 71-79.
|
9 |
许守平, 李相俊, 惠东. 大规模电化学储能系统发展现状及示范应用综述[J]. 电力建设, 2013, 34(7): 73-80.
|
|
XU S P, LI X J, HUI D. A review of development and demonstration application of large-scale electrochemical energy storage[J]. Electric Power Construction, 2013, 34(7): 73-80.
|
10 |
汪承晔, 刘英泽, 罗志民, 等. 浅析动力电池模组过充问题[J]. 储能科学与技术, 2018, 7(6): 1135-1138.
|
|
WANG C Y, LIU Y Z, LUO Z M, et al. Analysis of overcharge problem of power battery module[J]. Energy Storage Science and Technology, 2018, 7(6): 1135-1138.
|
11 |
张少禹, 董海斌, 李毅, 等. 动力锂离子电池热失控火灾试验模型研究[J]. 消防科学与技术, 2018, 37(3): 397-400.
|
|
ZHANG S Y, DONG H B, LI Y, et al. Study on the experimental model of thermal runaway fire of lithium ion battery for EV[J]. Fire Science and Technology, 2018, 37(3): 397-400.
|
12 |
孙杰, 李吉刚, 党胜男, 等. 锂离子电池及其材料热失控毒物研究[J]. 储能科学与技术, 2015, 4(6): 609-615.
|
|
SUN J, LI J G, DANG S N, et al. Research of toxic productions from thermal runaway processes of Li-ion battery and materials[J]. Energy Storage Science and Technology, 2015, 4(6): 609-615.
|
13 |
中华人民共和国住房和城乡建设部. 建筑设计防火规范: GB 50016—2014[S]. 北京: 中国计划出版社, 2014.
|
|
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for fire protection design of buildings: GB 50016—2014[S]. Beijing: China Planning Press, 2014.
|
14 |
GAO S, LU L G, OUYANG M, et al. Experimental study on module-to-module thermal runaway-propagation in a battery pack[J]. Journal of the Electrochemical Society, 2019, 166(10): doi: 10.1149/2.1011910jes.
|