Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (1): 23-34.doi: 10.19799/j.cnki.2095-4239.2022.0437
• Energy Storage Materials and Devices • Previous Articles Next Articles
Han ZHENG(), Peipei LAI, Xiaohua TIAN, Zhuo SUN, Zhejuan ZHANG()
Received:
2022-08-05
Revised:
2022-09-13
Online:
2023-01-05
Published:
2023-02-08
Contact:
Zhejuan ZHANG
E-mail:zhenghan_1998@163.com;zjhang@phy.ecnu.edu.cn
CLC Number:
Han ZHENG, Peipei LAI, Xiaohua TIAN, Zhuo SUN, Zhejuan ZHANG. Performance of large-scale silicon particles coated with multistage carbon as anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(1): 23-34.
Table 1
Cycle performance of SPU and SPU#PANI"
样品名 | 循环首次 | 循环100次 | ||||||
---|---|---|---|---|---|---|---|---|
充电/(mAh/g) | 放电/(mAh/g) | 效率/% | 充电/(mAh/g) | 放电/(mAh/g) | 效率/% | 容量保持率/% | ||
SPU-4 | 1454.8 | 1885.7 | 77.15 | 609.2 | 614 | 99.23 | 38.82 | |
SPU-8 | 1839.2 | 2193.6 | 83.84 | 615.7 | 620 | 99.31 | 30.74 | |
SPU-24 | 608 | 772.2 | 78.73 | 564.8 | 570.3 | 99.04 | 80.14 | |
SPU#PANI-1 | 939.7 | 1291.4 | 77.26 | 702.8 | 738.7 | 99.3 | 59.09 | |
SPU#PANI-2 | 1011.3 | 1177.8 | 85.87 | 669.8 | 675.8 | 99.11 | 61.55 | |
SPU#PANI-3 | 1011.8 | 1162.6 | 87.03 | 747.7 | 756.3 | 98.87 | 64.32 |
Fig. 12
(a) CV curves at different sweep rates; (b) the relationship between current and sweep rates in both discharging and charging process; (c) percentage of capacitive and diffusion contribution at 0.8 mV/s; (d) percentage of the capacitive and diffusion contribution at different sweep rates of SPU#PANI-3"
1 | IKONEN T, NISSINEN T, POHJALAINEN E, et al. Electrochemically anodized porous silicon: Towards simple and affordable anode material for Li-ion batteries[J]. Scientific Reports, 2017, 7: 7880. |
2 | ZHANG Y, ZHANG X G, ZHANG H L, et al. Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries[J]. Electrochimica Acta, 2006, 51(23): 4994-5000. |
3 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
4 | DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
5 | JIA H P, ZHENG J M, SONG J H, et al. A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries[J]. Nano Energy, 2018, 50: 589-597. |
6 | YU C L, TIAN X H, XIONG Z C, et al. High stability of sub-micro-sized silicon/carbon composites using recycling Silicon waste for lithium-ion battery anode[J]. Journal of Alloys and Compounds, 2021, 869: doi: 10.1016/j.jallcom.2021.159124. |
7 | HOELTGEN C, LEE J E, JANG B Y. Stepwise carbon growth on Si/SiOx core-shell nanoparticles and its effects on the microstructures and electrochemical properties for high-performance lithium-ion battery's anode[J]. Electrochimica Acta, 2016, 222: 535-542. |
8 | CHO M K, YOU S J, WOO J G, et al. Anomalous Si-based composite anode design by densification and coating strategies for practical applications in Li-ion batteries[J]. Composites Part B: Engineering, 2021, 215: doi: 10.1016/j.compositesb.2021.108799. |
9 | PENG J, LUO J, LI W W, et al. Insight into the performance of the mesoporous structure SiOx nanoparticles anchored on carbon fibers as anode material of lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2021, 880: doi: 10.1016/j.jelechem. 2020.114798. |
10 | HSIEH C C, LIN Y G, CHIANG C L, et al. Carbon-coated porous Si/C composite anode materials via two-step etching/coating processes for lithium-ion batteries[J]. Ceramics International, 2020, 46(17): 26598-26607. |
11 | LV R T, CUI T X, JUN M S, et al. Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support[J]. Advanced Functional Materials, 2011, 21(5): 999-1006. |
12 | ZAMFIR M R, NGUYEN H T, MOYEN E, et al. Silicon nanowires for Li-based battery anodes: A review[J].Journal of Materials Chemistry A, 2013, 1(34): doi: 10.1039/c3ta11714f. |
13 | FENG X J, CUI H M, MIAO R R, et al. Nano/micro-structured silicon@carbon composite with buffer void as anode material for lithium ion battery[J]. Ceramics International, 2016, 42(1): 589-597. |
14 | 袁开军, 江治, 李疏芬, 周允基. 聚氨酯弹性体的热分解动力学研究[J]. 应用化学, 2005, 22(8): 861-864. |
YUAN K J, JIANG Z, LI S F, et al. Kinetics of thermal degradation of polyurethane elastomers[J]. Chinese Journal of Applied Chemistry, 2005, 22(8): 861-864. | |
15 | BRANCA C, DI BLASI C, CASU A, et al. Reaction kinetics and morphological changes of a rigid polyurethane foam during combustion[J]. Thermochimica Acta, 2003, 399(1/2): 127-137. |
16 | WANG H, WANG L F, WANG L C, et al. Phosphorus particles embedded in reduced graphene oxide matrix to enhance capacity and rate capability for capacitive potassium-ion storage[J]. Chemistry-A European Journal, 2018, 24(52): 13897-13902. |
17 | JU Z C, LI P Z, MA G Y, et al. Few layer nitrogen-doped graphene with highly reversible potassium storage[J]. Energy Storage Materials, 2018, 11: 38-46. |
18 | LI Z L, ZHAO H L, LV P P, et al. Watermelon-like structured SiOx-TiO2@C nanocomposite as a high-performance lithium-ion battery anode[J]. Advanced Functional Materials, 2018, 28(31): doi: 10.1002/adfm.201605711. |
19 | WANG X R, LIU J Y, LIU Z W, et al. Identifying the key role of pyridinic-N-co bonding in synergistic electrocatalysis for reversible ORR/OER[J]. Advanced Materials, 2018, 30(23): doi: 10.1002/adma.201800005. |
20 | MADHAN KUMAR A, SURESH BABU R, OBOT I B, et al. Fabrication of nitrogen doped graphene oxide coatings: Experimental and theoretical approach for surface protection[J]. RSC Advances, 2015, 5(25): 19264-19272. |
21 | TAN Z Q, NI K, CHEN G X, et al. Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage[J]. Advanced Materials, 2017, 29(8): doi: 10.1002/adma.201603414. |
22 | HEUBNER C, SCHNEIDER M, MICHAELIS A. Diffusion-limited C-rate: A fundamental principle quantifying the intrinsic limits of Li-ion batteries[J]. Advanced Energy Materials, 2020, 10(2): doi: 10.1002/aenm.201902523. |
23 | ZHOU X Y, TANG J J, YANG J, et al. Silicon@carbon hollow core-shell heterostructures novel anode materials for lithium ion batteries[J]. Electrochimica Acta, 2013, 87: 663-668. |
24 | EIN-ELI Y. A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Li-ion cells[J]. Electrochemical and Solid-State Letters, 1999, 2(5): doi: 10.1149/1.1390787. |
25 | XU C, WANG B Y, LUO H, et al. Embedding silicon in pinecone-derived porous carbon as a high-performance anode for lithium-ion batteries[J]. ChemElectroChem, 2020, 7(13): 2889-2895. |
26 | WANG J, POLLEUX J, LIM J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. The Journal of Physical Chemistry C, 2007, 111(40): 14925-14931. |
27 | SIMON P, GOGOTSI Y, DUNN B. Where do batteries end and supercapacitors begin? [J]. Science, 2014, 343(6176): 1210-1211. |
[1] | Wenshu ZHANG, Fangyuan HU, Hao HUANG, Xudong WANG, Man YAO. Sodium storage anode based on titanium-based MXene and its performance regulation mechanism [J]. Energy Storage Science and Technology, 2023, 12(1): 35-41. |
[2] | Mengyu TIAN, Yida WU, Junfeng HAO, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2022 to Nov. 30, 2022) [J]. Energy Storage Science and Technology, 2023, 12(1): 1-15. |
[3] | Jing ZHU, Yida WU, Junfeng HAO, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2022 to Jul. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(9): 3035-3050. |
[4] | Jun ZHANG, Qi LI, Ying TAO, Quanhong YANG. Sieving carbons for sodium-ion batteries: Origin and progress [J]. Energy Storage Science and Technology, 2022, 11(9): 2825-2833. |
[5] | Shaojun NIU, Kai WU, Guobin ZHU, Yan WANG, Qunting QU, Honghe ZHENG. Studies on the swelling force during cycling of Si-based anodes in lithium ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2989-2994. |
[6] | Shuya GONG, Yue WANG, Meng LI, Jingyi QIU, Hong WANG, Yuehua WEN, Bin XU. Research progress on TiNb2O7 anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2921-2932. |
[7] | Xin SHEN, Rui ZHANG, Chenzi ZHAO, Peng WU, Yutong ZHANG, Jundong ZHANG, Lizhen FAN, Quanbing LIU, Aibing CHEN, Qiang ZHANG. Recent advances in mechano-electrochemistry in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2781-2797. |
[8] | Hang YU, Ying ZHANG, Chaohang XU, Sihan YU. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems [J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663. |
[9] | Rongyang WEI, Tian MAO, Han GAO, Jianren PENG, Jian YANG. Health state estimation of lithium ion battery based on TWP-SVR [J]. Energy Storage Science and Technology, 2022, 11(8): 2585-2599. |
[10] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[11] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[12] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[13] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[14] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[15] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||