Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (1): 35-41.doi: 10.19799/j.cnki.2095-4239.2022.0513
• Energy Storage Materials and Devices • Previous Articles Next Articles
Wenshu ZHANG(), Fangyuan HU, Hao HUANG, Xudong WANG, Man YAO()
Received:
2022-09-08
Revised:
2022-10-13
Online:
2023-01-05
Published:
2023-02-08
Contact:
Man YAO
E-mail:zws0719@163.com;yaoman@dlut.edu.cn
CLC Number:
Wenshu ZHANG, Fangyuan HU, Hao HUANG, Xudong WANG, Man YAO. Sodium storage anode based on titanium-based MXene and its performance regulation mechanism[J]. Energy Storage Science and Technology, 2023, 12(1): 35-41.
1 | FENG F, WU J C, WU C Z, et al. Regulating the electrical behaviors of 2D inorganic nanomaterials for energy applications[J]. Small (Weinheim an Der Bergstrasse, Germany), 2015, 11(6): 654-666. |
2 | HU J P, XU B, YANG S A, et al. 2D electrides as promising anode materials for Na-ion batteries from first-principles study[J]. ACS Applied Materials & Interfaces, 2015, 7(43): 24016-24022. |
3 | WANG H, LAN X Z, JIANG D L, et al. Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries[J]. Journal of Power Sources, 2015, 283: 187-194. |
4 | WANG X F, KAJIYAMA S, IINUMA H, et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms7544. |
5 | NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials (Deerfield Beach, Fla), 2011, 23(37): 4248-4253. |
6 | XU M, LEI S L, QI J, et al. Opening magnesium storage capability of two-dimensional MXene by intercalation of cationic surfactant[J]. ACS Nano, 2018, 12(4): 3733-3740. |
7 | KAZEMI S A, WANG Y. Super strong 2D titanium carbide MXene-based materials: A theoretical prediction[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2020, 32(11): doi: 10.1088/1361-648X/ab5bd8. |
8 | SHUCK C E, GOGOTSI Y. Taking MXenes from the lab to commercial products[J]. Chemical Engineering Journal, 2020, 401: doi: 10.1016/j.cej.2020.125786. |
9 | WU Y J, SUN Y J, ZHENG J F, et al. MXenes: Advanced materials in potassium ion batteries[J]. Chemical Engineering Journal, 2021, 404: doi: 10.1016/j.cej.2020.126565. |
10 | ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials, 2017, 29(18): 7633-7644. |
11 | YU H L, LIN W, ZHANG Y F, et al. Exploring the potentials of Ti3N2 and Ti3N2X2 (X = O, F, OH) monolayers as anodes for Li or non-Li ion batteries from first-principles calculations[J]. RSC Advances, 2019, 9(69): 40340-40347. |
12 | ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2: doi: 10.1038/natrevmats.2016.98. |
13 | BARSOUM M W, RADOVIC M. Elastic and mechanical properties of the MAX phases[J]. Annual Review of Materials Research, 2011, 41: 195-227. |
14 | PERSSON P O Å, ROSEN J. Current state of the art on tailoring the MXene composition, structure, and surface chemistry[J]. Current Opinion in Solid State and Materials Science, 2019, 23(6): doi: 10.1016/j.cossms.2019.100774. |
15 | NAGUIB M, HALIM J, LU J, et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries[J]. Journal of the American Chemical Society, 2013, 135(43): 15966-15969. |
16 | YANG Z F, ZHENG Y P, LI W L, et al. Investigation of two-dimensional HF-based MXenes as the anode materials for Li/Na-ion batteries: A DFT study[J]. Journal of Computational Chemistry, 2019, 40(13): 1352-1359. |
17 | YANG E, JI H, KIM J, et al. Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(7): 5000-5005. |
18 | LI H, LIU A M, REN X F, et al. A black phosphorus/Ti3C2 MXene nanocomposite for sodium-ion batteries: A combined experimental and theoretical study[J]. Nanoscale, 2019, 11(42): 19862-19869. |
19 | FANG Y Z, LIAN R Q, LI H P, et al. Induction of planar sodium growth on MXene (Ti3C2Tx)-modified carbon cloth hosts for flexible sodium metal anodes[J]. ACS Nano, 2020, 14(7): 8744-8753. |
20 | WANG X, WANG J, QIN J W, et al. Surface charge engineering for covalently assembling three-dimensional MXene network for all-climate sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39181-39194. |
21 | WU Y T, NIE P, WU L Y, et al. 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries[J]. Chemical Engineering Journal, 2018, 334: 932-938. |
22 | GRIMME S, ANTONY J, EHRLICH S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): doi: 10.1063/1.3382344. |
23 | DRONSKOWSKI R, BLOECHL P E. Crystal orbital Hamilton populations (COHP): Energy-resolved visualization of chemical bonding in solids based on density-functional calculations[J]. The Journal of Physical Chemistry, 1993, 97(33): 8617-8624. |
24 | ZHANG W S, CHEN J, LIU S Y, et al. Atomic-scale investigation of electronic properties and Na storage performance of Ti3C2Tx-MXene bilayers with various terminations[J]. Applied Surface Science, 2021, 567: doi: 10.1016/j.apsusc.2021.150735. |
25 | ZHANG W S, LIU S Y, CHEN J, et al. Exploring the potentials of Ti3CiN2- iTx (i=0, 1, 2)-MXene for anode materials of high-performance sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22341-22350. |
26 | XU E Z, ZHANG Y, WANG H, et al. Ultrafast kinetics net electrode assembled via MoSe2/MXene heterojunction for high-performance sodium-ion batteries[J]. Chemical Engineering Journal, 2020, 385: doi: 10.1016/j.cej.2019.123839. |
27 | ZHAO M Q, XIE X Q, REN C E, et al. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage[J]. Advanced Materials, 2017, 29(37): doi: 10.1002/adma.201702410. |
[1] | Shuya GONG, Yue WANG, Meng LI, Jingyi QIU, Hong WANG, Yuehua WEN, Bin XU. Research progress on TiNb2O7 anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2921-2932. |
[2] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[3] | Tiezhu GUO, Di ZHOU, Chuanfang ZHANG. Strategies for improving MXene colloidal stability and impact on their supercapacitor performance [J]. Energy Storage Science and Technology, 2022, 11(4): 1165-1174. |
[4] | Zan DUAN, Lingfang LI, Penghui LIU, Dongfang XIAO. Review on advanced preparation methods and energy storage mechanism of MXenes as energy storage materials [J]. Energy Storage Science and Technology, 2022, 11(3): 982-990. |
[5] | Bochao YANG, Jie LÜ, Ziwei ZHEN, Jianjun WANG, Yuxia SHEN, Yu ZHANG, Yi WANG. Crystallization kinetics of stearic acid and stearic acid/MXene composite phase change materials [J]. Energy Storage Science and Technology, 2022, 11(12): 3836-3844. |
[6] | Weixiang CHENG, Xingwen HUANG, Yuezhu LI, Junqi HU, Songyi LIAO, Yonggang MIN. Advances in layered metal disulfide as anode material for Na-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(10): 3062-3075. |
[7] | Dewang SUN, Bizhi JIANG, Tao YUAN, Shiyou ZHENG. Research progress of titanium niobium oxide used as anode of lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2127-2143. |
[8] | Yuexia LI, Quanbing LIU. Application of MXene-based nanomaterials in electrocatalysis for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1918-1930. |
[9] | Qiang CHEN, Min LI, Jingfa LI. Application of Prussian blue analogs and their derivatives in potassium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. |
[10] | Tenghui WANG, Guo CHEN, Xuelin YANG. Review of preparations of amorphous nanostructured silicon powder [J]. Energy Storage Science and Technology, 2021, 10(2): 440-447. |
[11] | Guangling WEI, Ying JIANG, Jiahui ZHOU, Ziheng WANG, Yongxin HUANG, Man XIE, Feng WU. Research progress on metal oxides/sulfides/selenides anode materials of sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1318-1326. |
[12] | MA Tengfei, MA Chao, SUN Rui, JI Hongmei, YANG Gang. Freeze-drying assisted synthesis of mno/reduced graphene composite and the improved rate cyclic performance for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1044-1051. |
[13] | ZHOU Junhua, LUO Fei, CHU Geng, LIU Bonan, LU Hao, ZHENG Jieyun, LI Hong, HUANG Xuejie, CHEN Liquan. Research progress on nano silicon-carbon anode materials for lithium ion battery [J]. Energy Storage Science and Technology, 2020, 9(2): 569-582. |
[14] | LI Zhendong, WANG Zhenhua, ZHANG Shilong, FU Chunlin. Research progress of MOFs and its derivatives as electrode materials for lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(1): 18-24. |
[15] | LIU Xingwen, HE Jinxin, WANG Hailin, JIN Chengyou, MIAO Yonghua, XUE Chi. Preparation and electrochemical performance of F-doped SiO@C composite material [J]. Energy Storage Science and Technology, 2019, 8(S1): 56-59. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||