Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (9): 3035-3050.doi: 10.19799/j.cnki.2095-4239.2022.0457
• Research Highlight • Previous Articles
Jing ZHU(), Yida WU, Junfeng HAO, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2022-08-17
Online:
2022-09-05
Published:
2022-08-30
Contact:
Xuejie HUANG
E-mail:zhujing16@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
CLC Number:
Jing ZHU, Yida WU, Junfeng HAO, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2022 to Jul. 31, 2022)[J]. Energy Storage Science and Technology, 2022, 11(9): 3035-3050.
1 | YAN X L, YE F J, ZHANG Y, DENG W, et al. Understanding the anchoring effect on Li plating with indium tin oxide layer functionalized hosts for Li metal anodes[J]. Chemical Engineering Journal, 2022, doi: 10.1016/j.cej.2022.135827. |
2 | NI L, CHEN H, DENG W, et al. Atomical reconstruction and cationic reordering for nickel-rich layered cathodes[J]. Advanced Energy Materials, 2022, doi: 10.1002/aenm.202103757. |
3 | ZHANG L, CHEN H C, PAN J H, et al. Extraction of lithium from coal gangue by a roasting-leaching process[J]. International Journal of Coal Preparation and Utilization, 2022, doi: 10.1080/19392699.2022.2083611. |
4 | OU X, LIU T C, ZHONG W T, et al. Enabling high energy lithium metal batteries via single-crystal Ni-rich cathode material co-doping strategy[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-30020-4. |
5 | XU T, DU F H, WU L, et al. Boosting the electrochemical performance of LiNiO2 by extra low content of Mn-doping and its mechanism[J]. Electrochimica Acta, 2022, 417: doi: 10.1016/j.electacta.2022.140345. |
6 | KIM J M, XU Y B, ENGELHARD M H, et al. Facile dual-protection layer and advanced electrolyte enhancing performances of cobalt-free/nickel-rich cathodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17405-17414. |
8 | AHN J, HA Y, SATISH R, et al. Exceptional cycling performance enabled by local structural rearrangements in disordered rocksalt cathodes[J]. Advanced Energy Materials, 2022, 12(27): doi: 10.1002/aenm.202200426. |
9 | ARNOT D J, LI W Z, BOCK D C, et al. Low-oxidized siloxene nanosheets with high capacity, capacity retention, and rate capability in lithium-based batteries[J]. Advanced Materials Interfaces, 2022, 9(17): doi: 10.1002/admi.202102238. |
10 | WANG H L, WU W W, JIA Q R, et al. Scalable layer-by-layer stacking of the silicon-graphite composite: Prelithiation strategy of the high-capacity anode for energy/power-dense Li batteries[J]. Industrial & Engineering Chemistry Research, 2022, 61(22): 7442-7450. |
11 | REN Y, YIN X C, XIAO R, et al. Layered porous silicon encapsulated in carbon nanotube cage as ultra-stable anode for lithium-ion batteries[J]. Chemical Engineering Journal, 2022, 431: doi: 10.1016/j.cej.2021.133982. |
12 | KIM J, KIM M S, LEE Y, et al. Hierarchically structured conductive polymer binders with silver nanowires for high-performance silicon anodes in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17340-17347. |
13 | QU G R, WEI Y G, LIU C P, et al. Efficient separation and recovery of lithium through volatilization in the recycling process of spent lithium-ion batteries[J]. Waste Management, 2022, 150: 66-74. |
14 | LUO P, LAI P Y, HUANG Y W, et al. A highly stretchable and self-healing composite binder based on the hydrogen-bond network for silicon anodes in high-energy-density lithium-ion batteries[J]. ChemElectroChem, 2022, 9(12): doi: 10.1002/celc.202200155. |
15 | SCOTT S, TERREBLANCHE J, THOMPSON D L, et al. Gelatin and alginate binders for simplified battery recycling[J]. The Journal of Physical Chemistry C, 2022, 126(19): 8489-8498. |
16 | ZHAO J K, WEI D N, WANG J J, et al. Inorganic crosslinked supramolecular binder with fast Self-Healing for high performance silicon based anodes in Lithium-Ion batteries[J]. Journal of Colloid and Interface Science, 2022, 625: 373-382. |
17 | WAN X, MU T S, SHEN B C, et al. Stable silicon anodes realized by multifunctional dynamic cross-linking structure with self-healing chemistry and enhanced ionic conductivity for lithium-ion batteries[J]. Nano Energy, 2022, 99: doi: 10.1016/j.nanoen.2022.107334. |
18 | LV L Z, WANG Y, HUANG W B, et al. Construction of a LiF-rich and stable SEI film by designing a binary, ion-, and electron-conducting buffer interface on the Si surface[J]. ACS Applied Materials & Interfaces, 2022, 14(30): 35246-35254. |
19 | CHUNG D J, YOUN D, KIM J Y, et al. Topology optimized prelithiated SiO anode materials for lithium-ion batteries[J]. Small, 2022, 18(27): doi: 10.1002/smll.202202209. |
20 | NI S Y, SHENG J Z, ZHANG C, et al. Dendrite-free lithium deposition and stripping regulated by aligned microchannels for stable lithium metal batteries[J]. Advanced Functional Materials, 2022, 32(21): doi: 10.1002/adfm.202200682. |
21 | FUCHS T, HASLAM C G, MOY A C, et al. Increasing the pressure-free stripping capacity of the lithium metal anode in solid-state-batteries by carbon nanotubes[J]. Advanced Energy Materials, 2022, 12(26): doi: 10.1002/aenm.202201125. |
22 | LI C, LI Y, YU Y K, et al. One-pot preparation of lithium compensation layer, lithiophilic layer, and artificial solid electrolyte interphase for lean-lithium metal anode[J]. ACS Applied Materials & Interfaces, 2022, 14(17): 19437-19447. |
23 | ZHAO P Y, LI Y, CHEN S J, et al. Constructing self-adapting electrostatic interface on lithium metal anode for stable 400 Wh·kg-1 pouch cells[J]. Advanced Energy Materials, 2022, 12(26): doi: 10.1002/aenm.202200568. |
24 | CAO S L, HE X, NIE L L, et al. CF4 plasma-generated LiF-Li2C2 artificial layers for dendrite-free lithium-metal anodes[J]. Advanced Science, 2022, 9(21): doi: 10.1002/advs.202201147. |
25 | DUAN C, CHENG Z, LI W, et al. Realizing the compatibility of a Li metal anode in an all-solid-state Li-S battery by chemical iodine-vapor deposition[J]. Energy & Environmental Science, 2022, 15(8): 3236-3245. |
26 | PAN A R, WANG Z C, ZHANG F R, et al. Wide-temperature range and high safety electrolytes for high-voltage Li-metal batteries[J]. Nano Research, 2022, doi: 10.1007/s12274-022-4655-1. |
27 | PEI X P, LI Y J, OU T, et al. Li-N interaction induced deep eutectic gel polymer electrolyte for high performance lithium-metal batteries[J]. Angewandte Chemie International Edition, 2022, 61(31): doi: 10.1002/anie.202205075 |
28 | AN Y, WANG H Q, YANG Z G, et al. High lithium ion flux of integrated organic electrode/solid polymer electrolyte from in situ polymerization[J]. ACS Applied Materials & Interfaces, 2022, 14(24): 27932-27940. |
29 | CHIU L L, CHUNG S H. Composite gel-polymer electrolyte for high-loading polysulfide cathodes[J]. Journal of Materials Chemistry A, 2022, 10(26): 13719-13726. |
30 | UTOMO N W, DENG Y, ZHAO Q, et al. Structure and evolution of quasi-solid-state hybrid electrolytes formed inside electrochemical cells (adv. mater. 32/2022)[J]. Advanced Materials, 2022, 34(32): doi: 10.1002/adma.202110333. |
31 | LIU M, GUAN X, LIU H M, et al. Composite solid electrolytes containing single-ion lithium polymer grafted garnet for dendrite-free, long-life all-solid-state lithium metal batteries[J]. Chemical Engineering Journal, 2022, 445: doi: 10.1016/j.cej.2022.136436. |
32 | ZHANG K, WU F, WANG X R, et al. 8.5 µm-thick flexible-rigid hybrid solid-electrolyte/lithium integration for air-stable and interface-compatible all-solid-state lithium metal batteries[J]. Advanced Energy Materials, 2022, 12(24): doi: 10.1002/aenm.202200368. |
33 | WANG H J, WU L L, XUE B, et al. Improving cycling stability of the lithium anode by a spin-coated high-purity Li3PS4 artificial SEI layer[J]. ACS Applied Materials & Interfaces, 2022, 14(13): 15214-15224. |
34 | KIM J H, PARK D H, JANG J S, et al. High-performance free-standing hybrid solid electrolyte membrane combined with Li6.28Al0.24La3Zr2O12 and hexagonal-BN for all-solid-state lithium-based batteries[J]. Chemical Engineering Journal, 2022, 446: doi: 10.1016/j.cej.2022.137035. |
35 | JIANG F, WANG Y T, JU J W, et al. Percolated sulfide in salt-concentrated polymer matrices extricating high-voltage all-solid-state lithium-metal batteries[J]. Advanced Science, 2022: doi: 10.1002/advs.202202474. |
36 | OH Y S, KIM M, KANG S, et al. Redox activity of Li2S-P2S5 electrolyte inducing chemo-mechanical failure in all-solid-state batteries comprising sulfur composite cathode and Li-Si alloy anode[J]. Chemical Engineering Journal, 2022, 442: doi: 10.1016/j.cej.2022.136229. |
37 | AHMAD N, SUN S R, YU P W, et al. Design unique air-stable and Li-metal compatible sulfide electrolyte via exploration of anion functional units for all-solid-state lithium-metal batteries[J]. Advanced Functional Materials, 2022, 32(28): doi: 10.1002/adfm.202201528. |
38 | ARNOLD W, SHREYAS V, LI Y, et al. Synthesis of fluorine-doped lithium argyrodite solid electrolytes for solid-state lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11483-11492. |
39 | HAN A G, TIAN R Z, FANG L R, et al. A low-cost liquid-phase method of synthesizing high-performance Li6PS5 Cl solid-electrolyte[J]. ACS Applied Materials & Interfaces, 2022, 14(27): doi: 10.1021/acsami.2c06075. |
40 | ITO T, HORI S, HIRAYAMA M, et al. Liquid-phase synthesis of the Li10GeP2S12-type phase in the Li-Si-P-S-Cl system[J]. Journal of Materials Chemistry A, 2022, 10(27): 14392-14398. |
41 | LUO C C, ZHOU X Y, DING J, et al. In-situ migration of Ni induced crystallization to boost the initial coulombic efficiency of nano Si anode for lithium ion batteries[J]. Composites Communications, 2022, 32: doi: 10.1016/j.coco.2022.101157. |
42 | CHEN Z Y, WANG B, LI Y, et al. Stable solvent-derived inorganic-rich solid electrolyte interphase (SEI) for high-voltage lithium-metal batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(24): 28014-28020. |
43 | LI X, LIU J D, HE J, et al. Separator-wetted, acid-and water-scavenged electrolyte with optimized Li-ion solvation to form dual efficient electrode electrolyte interphases via hexa-functional additive[J]. Advanced Science, 2022, 9(20): doi: 10.1002/advs.202201297. |
44 | KLEIN S, HANEKE L, HARTE P, et al. Suppressing electrode crosstalk and prolonging cycle life in high-voltage Li ion batteries: Pivotal role of fluorophosphates in electrolytes[J]. ChemElectroChem, 2022, 9(13): doi: 10.1002/celc.202200469. |
45 | FANG M M, CHEN J E, CHEN B Y, et al. Salt-solvent synchro-constructed robust electrolyte-electrode interphase for high-voltage lithium metal batteries[J]. Journal of Materials Chemistry A, 2022: doi: 10.1039/d2ta02267b. |
46 | LIANG B, CHENG F Y, GE X Y, et al. Tailoring electrolytes to enable low-temperature cycling of Ni-rich NCM cathode materials for Li-ion batteries[J]. ACS Applied Energy Materials, 2022, 5(5): 5867-5874. |
47 | ZHAO Y, ZHOU T H, ASHIROV T, et al. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-29199-3. |
48 | DROZHZHIN O A, SHEVCHENKO V A, BOBYLEVA Z V, et al. Rational screening of high-voltage electrolytes and additives for use in LiNi0.5Mn1.5O4-based Li-ion batteries[J]. Molecules (Basel, Switzerland), 2022, 27(11): doi: 10.3390/molecules27113596. |
49 | SU L S, JO E, MANTHIRAM A. Protection of cobalt-free LiNiO2 from degradation with localized saturated electrolytes in lithium-metal batteries[J]. ACS Energy Letters, 2022, 7(6): 2165-2172. |
50 | ZHANG H, ZENG Z Q, HE R J, et al. 1, 3, 5-Trifluorobenzene and fluorobenzene co-assisted electrolyte with thermodynamic and interfacial stabilities for high-voltage lithium metal battery[J]. Energy Storage Materials, 2022, 48: 393-402. |
51 | ZHOU H X, LI T H, LIU W J, et al. tert-Butyl(diphenyl)silyl]trifluoromethanesulfonate acts as an effective additive for high-voltage lithium metal batteries[J]. Materials Chemistry Frontiers, 2022, 6(16): 2274-2283. |
52 | XIAO P T, ZHAO Y, PIAO Z H, et al. A nonflammable electrolyte for ultrahigh-voltage (4.8 V-class) Li||NCM811 cells with a wide temperature range of 100 ℃[J]. Energy & Environmental Science, 2022, 15(6): 2435-2444. |
53 | KANG H, KIM H, YEOM C, et al. Designing hybrid artificial interphases with dilithium vinylphosphonate for lithium batteries with Si-graphite anodes[J]. ACS Applied Energy Materials, 2022, 5(4): 4673-4683. |
54 | PENG Z D, HUANG M, WANG W G, et al. Enhancing the structure and interface stability of LiNi0.83Co0.12Mn0.05O2 cathode material for Li-ion batteries via facile CeP2O7 coating[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(15): 4881-4893. |
55 | ZHOU H Y, YAN S S, LI J, et al. Lithium bromide-induced organic-rich cathode/electrolyte interphase for high-voltage and flame-retardant all-solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(21): 24469-24479. |
56 | SUN Z J, XI K, CHEN J, et al. Expanding the active charge carriers of polymer electrolytes in lithium-based batteries using an anion-hosting cathode[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-30788-5. |
57 | SUN X, CAO D X, WANG Y, et al. All-solid-state Li-S batteries enhanced by interface stabilization and reaction kinetics promotion through 2D transition metal sulfides[J]. Advanced Materials Interfaces, 2022, 9(20): doi: 10.1002/admi.202200539. |
58 | LI M Y, PAN H Y, LIU T, et al. All-in-one ionic-electronic dual-carrier conducting framework thickening all-solid-state electrode[J]. ACS Energy Letters, 2022, 7(2): 766-772. |
59 | NAIK K G, VISHNUGOPI B S, MUKHERJEE P P. Kinetics or transport: Whither goes the solid-state battery cathode? [J]. ACS Applied Materials & Interfaces, 2022, 14(26): 29754-29765. |
60 | HU J K, YUAN H, YANG S J, et al. Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2022, 71: 612-618. |
61 | WU X J, ZHANG Q, TANG G, et al. A solid-phase conversion sulfur cathode with full capacity utilization and superior cycle stability for lithium-sulfur batteries[J]. Small, 2022, 18(10): doi: 10.1002/smll.202106144. |
62 | HE J R, BHARGAV A, MANTHIRAM A. High-performance anode-free Li-S batteries with an integrated Li2S-electrocatalyst cathode[J]. ACS Energy Letters, 2022, 7(2): 583-590. |
63 | DING Y F, CHENG Q S, WU J H, et al. Enhanced dual-directional sulfur redox via a biotemplated single-atomic Fe-N2 mediator promises durable Li-S batteries[J]. Advanced Materials, 2022, 34(28): doi: 10.1002/adma.202202256. |
64 | LI Y C, LI W D, YAN X J, et al. Terminal sulfur atoms formation via defect engineering strategy to promote the conversion of lithium polysulfides[J]. Journal of Materials Science & Technology, 2022, 103: 221-231. |
65 | TU S B, CHEN Z H, ZHANG B, et al. Realizing high utilization of high-mass-loading sulfur cathode via electrode nanopore regulation[J]. Nano Letters, 2022, 22(14): 5982-5989. |
66 | ZHANG C Q, FEI B, YANG D W, et al. Robust lithium-sulfur batteries enabled by highly conductive WSe2-based superlattices with tunable interlayer space[J]. Advanced Functional Materials, 2022, 32(24): doi: 10.1002/adfm.202201322. |
67 | SUL H, BHARGAV A, MANTHIRAM A. Lithium trithiocarbonate as a dual-function electrode material for high-performance lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(22): doi: 10.1002/aenm.202200680. |
68 | WANG C, CHEN P, WANG Y N, et al. Synergistic cation-anion regulation of polysulfides by zwitterionic polymer binder for lithium-sulfur batteries[J]. Advanced Functional Materials, 2022: doi: 10.1002/adfm.202204451. |
69 | HELIGMAN B T, SCANLAN K P, MANTHIRAM A. Nanostructured composite foils produced via accumulative roll bonding as lithium-ion battery anodes[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11408-11414. |
70 | REN Y X, BHARGAV A, SHIN W, et al. Anode-free lithium-sulfur cells enabled by rationally tuning lithium polysulfide molecules[J]. Angewandte Chemie, 2022: doi: 10.1002/anie.202207907. |
71 | MENG X Y, LIU Y Z, GUAN M T, et al. A high-energy and safe lithium battery enabled by solid-state redox chemistry in a fireproof gel electrolyte[J]. Advanced Materials, 2022, 34(28): doi: 10.1002/adma.202201981. |
72 | LIU Q Q, LIU Y, XU Y F, et al. A "two-in-one" integrated electrode design for high-energy rechargeable bipolar Li batteries[J]. Journal of Materials Chemistry A, 2022, 10(21): 11498-11503. |
73 | SHITTU E, SUMAN R, RAVIKUMAR M K, et al. Life cycle assessment of soluble lead redox flow battery[J]. Journal of Cleaner Production, 2022, 337: doi: 10.1016/j.jclepro.2022.130503. |
74 | KIM J H, KIM J M, CHO S K, et al. Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries[J]. Nature Communications, 2022, 13: doi: 10.1038/s41467-022-30112-1. |
75 | WANG C, LIU R Q, FANG Y N, et al. Free-standing titanium nitride films as carbon-free sulfur hosts for flexible lithium-sulfur batteries[J]. ACS Applied Nano Materials, 2022, 5(3): 3531-3540. |
76 | ZHONG H, LEI F, ZHU W H, et al. An operation efficacy-oriented predictive control management for power-redistributable lithium-ion battery pack[J]. Energy, 2022, 251: doi: 10.1016/j.energy.2022.123851. |
77 | CHEN Y T, MARPLE M A T, TAN D H S, et al. Investigating dry room compatibility of sulfide solid-state electrolytes for scalable manufacturing[J]. Journal of Materials Chemistry A, 2022, 10(13): 7155-7164. |
78 | LI Q, ZHANG X Y, PENG J, et al. Engineering a high-voltage durable cathode/electrolyte interface for all-solid-state lithium metal batteries via in situ electropolymerization[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 21018-21027. |
79 | XU J R, LI J M, LI Y X, et al. Long-life lithium-metal all-solid-state batteries and stable Li plating enabled by in situ formation of Li3PS4 in the SEI layer[J]. Advanced Materials, 2022: doi: 10.1002/adma.202203281. |
80 | NIU Y J, YU Z Z, ZHOU Y J, et al. Constructing stable Li-solid electrolyte interphase to achieve dendrites-free solid-state battery: A nano-interlayer/Li pre-reduction strategy[J]. Nano Research, 2022, 15(8): 7180-7189. |
81 | SUN Z Q, LIN X D, WANG C T, et al. High-performance lithium-oxygen batteries using a urea-based electrolyte with kinetically favorable one-electron Li2O2 oxidation pathways[J]. Angewandte Chemie, 2022: doi: 10.1002/anie.202207570. |
82 | LI X L, WANG Y L, CHEN Z, et al. Two-electron redox chemistry enabled high-performance iodide-ion conversion battery[J]. Angewandte Chemie International Edition, 2022, 61(9): doi: 10.1002/anie.202113576. |
83 | CUI Z H, ZOU F, CELIO H, et al. Paving pathways toward long-life graphite/LiNi0.5Mn1.5O4 full cells: Electrochemical and interphasial points of view[J]. Advanced Functional Materials, 2022: doi: 10.1002/adfm.202203779. |
84 | LIU G, CAO Z, WANG P, et al. Switching electrolyte interfacial model to engineer solid electrolyte interface for fast charging and wide-temperature lithium-ion batteries[J]. Advanced Science, 2022: doi: 10.1002/advs.202201893. |
85 | LIN R Q, HE Y B, WANG C Y, et al. Characterization of the structure and chemistry of the solid-electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries[J]. Nature Nanotechnology, 2022, 17(7): 768-776. |
86 | SU L S, CHARALAMBOUS H, CUI Z H, et al. High-efficiency, anode-free lithium-metal batteries with a close-packed homogeneous lithium morphology[J]. Energy & Environmental Science, 2022, 15(2): 843-854. |
87 | THANGAVEL N K, MAHANKALI K, ARAVA L M R. Nanoscale visualization of reversible redox pathways in lithium-sulfur battery using in situ AFM-SECM[J]. Journal of the Electrochemical Society, 2022, 169(6): doi: 10.1149/1945-7111/ac70ff. |
88 | LIU J, LEE S Y, YOO J, et al. Real-time observation of mechanical evolution of micro-sized Si anodes by in situ atomic force microscopy[J]. ACS Materials Letters, 2022, 4(5): 840-846. |
89 | SUNG J, KIM N, KIM S P, et al. Highly densified fracture-free silicon-based electrode for high energy lithium-ion batteries[J]. Batteries & Supercaps, 2022: doi: 10.1002/batt.202200136. |
90 | ZHOU H, WU H, HAN X B, et al. An expeditious and simple scheme for measuring self-discharge rate of lithium batteries[J]. International Journal of Energy Research, 2022: doi: 10.1002/er.8293. |
91 | CHEN Y, YANG L F, GUO F L, et al. Mechanical-electrochemical modeling of silicon-graphite composite anode for lithium-ion batteries[J]. Journal of Power Sources, 2022, 527: doi: 10.1016/j.jpowsour.2022.231178. |
92 | ABDULKADIROGLU B, BEKTAS H, EROGLU D. How to model the cathode area in lithium-sulfur batteries?[J]. ChemElectroChem, 2022, 9(4): doi: 10.1002/celc.202101553. |
93 | VILA M N, BERNARDEZ E M, LI W Z, et al. Interfacial reactivity of silicon electrodes: Impact of electrolyte solvent and presence of conductive carbon[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 20404-20417. |
94 | LYU S Q, LI N, SUN L, et al. Rapid operando gas monitor for commercial lithium ion batteries: Gas evolution and relation with electrode materials[J]. Journal of Energy Chemistry, 2022, 72: 14-25. |
95 | VENTURI V, VISWANATHAN V. Thermodynamic analysis of initial steps for void formation at lithium/solid electrolyte interphase interfaces[J]. ACS Energy Letters, 2022, 7(6): 1953-1959. |
96 | DENG S X, JIANG M, RAO A, et al. Fast-charging halide-based all-solid-state batteries by manipulation of current collector interface[J]. Advanced Functional Materials, 2022, 32(25): doi: 10.1002/adfm.202200767. |
97 | RAJ V, VENTURI V, KANKANALLU V R, et al. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers[J]. Nature Materials, 2022: doi: 10.1038/s41563-022-01264-8. |
98 | SHAO Q N, GAO P Y, YAN C H, et al. A redox couple strategy enables long-cycling Li- and Mn-rich layered oxide cathodes by suppressing oxygen release[J]. Advanced Materials, 2022, 34(14): doi: 10.1002/adma.202108543. |
99 | DEREKA B, LEWIS N H C, ZHANG Y, et al. Exchange-mediated transport in battery electrolytes: Ultrafast or ultraslow? [J]. Journal of the American Chemical Society, 2022, 144(19): 8591-8604. |
100 | KIM M, YANG Z Z, TRASK S E, et al. Understanding the effect of cathode composition on the interface and crosstalk in NMC/Si full cells[J]. ACS Applied Materials & Interfaces, 2022, 14(13): 15103-15111. |
[1] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[2] | Pengbo ZHAI, Dongmei CHANG, Zhijie BI, Ning ZHAO, Xiangxin GUO. Research progress on key interfacial issues in lithium lanthanum zirconium oxide-based solid-state [J]. Energy Storage Science and Technology, 2022, 11(9): 2847-2865. |
[3] | Kaiqiang GUO, Haiying CHE, Haoran ZHANG, Jianping LIAO, Huang ZHOU, Yunlong ZHANG, Hangda CHEN, Zhan SHEN, Haimei LIU, Zifeng MA. Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2980-2988. |
[4] | Shuya GONG, Yue WANG, Meng LI, Jingyi QIU, Hong WANG, Yuehua WEN, Bin XU. Research progress on TiNb2O7 anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2921-2932. |
[5] | Qunbin ZHANG, Tao DONG, Jingjing LI, Yanxia LIU, Haitao ZHANG. Research progress on the recovery and high-value utilization of spent electrolyte from lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. |
[6] | Jun ZHANG, Qi LI, Ying TAO, Quanhong YANG. Sieving carbons for sodium-ion batteries: Origin and progress [J]. Energy Storage Science and Technology, 2022, 11(9): 2825-2833. |
[7] | Jinghua WU, Jing YANG, Gaozhan LIU, Zhiyan WANG, Zhihua ZHANG, Hailong YU, Xiayin YAO, Xuejie HUANG. Review and prospective of solid-state lithium batteries in the past decade (2011—2021) [J]. Energy Storage Science and Technology, 2022, 11(9): 2713-2745. |
[8] | Jianxin LU, Ying ZHANG, Chuyuan MA, Kang DENG, Chunying LEI. Study on fire-extinguishing performance of hydrogel on lithium-iron-phosphate batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2637-2644. |
[9] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[10] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[11] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[12] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[13] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[14] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[15] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||