Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (9): 3028-3034.doi: 10.19799/j.cnki.2095-4239.2022.0385
• Special Issue for the 10th Anniversary • Previous Articles Next Articles
Junlei WANG1,2,3(), Diling ZHANG1, Kun WANG3, Dongdong XU1,2, Xianggui XU1, Hua YAO1,2, Wenwei LIU1,2, Yun HUANG1,2,4()
Received:
2022-07-11
Revised:
2022-07-23
Online:
2022-09-05
Published:
2022-08-30
Contact:
Yun HUANG
E-mail:jlwang18@ipe.ac.cn;yunhuang@ipe.ac.cn
CLC Number:
Junlei WANG, Diling ZHANG, Kun WANG, Dongdong XU, Xianggui XU, Hua YAO, Wenwei LIU, Yun HUANG. Carbonates/blast furnace slag form-stable phase change materials[J]. Energy Storage Science and Technology, 2022, 11(9): 3028-3034.
1 | SHEN Z W, RITTER M. Forecasting volatility of wind power production[J]. Applied Energy, 2016, 176: 295-308. |
2 | ZHANG H L, BAEYENS J, CÁCERES G, et al. Thermal energy storage: Recent developments and practical aspects[J]. Progress in Energy and Combustion Science, 2016, 53: 1-40. |
3 | NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: A review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. |
4 | ALVA G, LIN Y X, FANG G Y. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378. |
5 | WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review[J]. Energy Storage Materials, 2020, 25: 251-295. |
6 | ALVA G, LIN Y X, LIU L K, et al. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review[J]. Energy and Buildings, 2017, 144: 276-294. |
7 | LIN Y X, ALVA G, FANG G Y. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials[J]. Energy, 2018, 165: 685-708. |
8 | JIANG F, ZHANG L L, SHE X H, et al. Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: doi: 10.1016/j.rser.2019.109539. |
9 | FERNÁNDEZ A I, BARRENECHE C, BELUSKO M, et al. Considerations for the use of metal alloys as phase change materials for high temperature applications[J]. Solar Energy Materials and Solar Cells, 2017, 171: 275-281. |
10 | GE Z W, YE F, CAO H, et al. Carbonate-salt-based composite materials for medium- and high-temperature thermal energy storage[J]. Particuology, 2014, 15: 77-81. |
11 | LI C, LI Q, CONG L, et al. MgO based composite phase change materials for thermal energy storage: The effects of MgO particle density and size on microstructural characteristics as well as thermophysical and mechanical properties[J]. Applied Energy, 2019, 250: 81-91. |
12 | 桑丽霞, 李锋. 碳酸盐复合蓄热材料的制备及热物性研究[J]. 化工学报, 2018, 69(S1): 129-135. |
SANG L X, LI F. Study on preparation and thermal properties of carbonates composite heat storage materials[J]. CIESC Journal, 2018, 69(S1): 129-135. | |
13 | ACURIO K, CHICO-PROANO A, MARTÍNEZ-GÓMEZ J, et al. Thermal performance enhancement of organic phase change materials using spent diatomite from the palm oil bleaching process as support[J]. Construction and Building Materials, 2018, 192: 633-642. |
14 | JIANG Z, LENG G H, YE F, et al. Form-stable LiNO3-NaNO3-KNO3-Ca(NO3)2/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage[J]. Energy Conversion and Management, 2015, 106: 165-172. |
15 | ZHANG H Z, SUN S Y, WANG X D, et al. Fabrication of microencapsulated phase change materials based on n-octadecane core and silica shell through interfacial polycondensation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 389(1/2/3): 104-117. |
16 | LI Q, LI C, QIAO G, et al. Effects of MgO particle size and density on microstructure development of MgO based composite phase change materials[J]. Energy Procedia, 2019, 158: 4517-4522. |
17 | GUILLOT S, FAIK A, RAKHMATULLIN A, et al. Corrosion effects between molten salts and thermal storage material for concentrated solar power plants[J]. Applied Energy, 2012, 94: 174-181. |
18 | MOTTE F, FALCOZ Q, VERON E, et al. Compatibility tests between Solar Salt and thermal storage ceramics from inorganic industrial wastes[J]. Applied Energy, 2015, 155: 14-22. |
19 | WANG T Y, ZHANG T Y, XU G Z, et al. A new low-cost high-temperature shape-stable phase change material based on coal fly ash and K2CO3[J]. Solar Energy Materials and Solar Cells, 2020, 206: doi:10.1016/j.solmat.2019.110328. |
20 | QIU F, SONG S K, LI D N, et al. Experimental investigation on improvement of latent heat and thermal conductivity of shape-stable phase-change materials using modified fly ash[J]. Journal of Cleaner Production, 2020, 246: doi:10.1016/j.jclepro.2019.118952. |
21 | RAM V V, SINGHAL R, PARAMESHWARAN R. Energy efficient pumpable cement concrete with nanomaterials embedded PCM for passive cooling application in buildings[J]. Materials Today: Proceedings, 2020, 28: 1054-1063. |
22 | ROSTAMI J, KHANDEL O, SEDIGHARDEKANI R, et al. Enhanced workability, durability, and thermal properties of cement-based composites with aerogel and paraffin coated recycled aggregates[J]. Journal of Cleaner Production, 2021, 297: doi:10.1016/j.jclepro. 2021.126518. |
23 | TAYEB A M. Use of some industrial wastes as energy storage media[J]. Energy Conversion and Management, 1996, 37(2): 127-133. |
24 | 王燕, 黄云, 姚华, 等. 太阳盐/钢渣定型复合相变储热材料的制备与性能研究[J]. 过程工程学报, 2021, 21(3): 332-340. |
WANG Y, HUANG Y, YAO H, et al. Fabrication and characterization of form-stable solar salt/steel slag composite phase change material for thermal energy storage[J]. The Chinese Journal of Process Engineering, 2021, 21(3): 332-340. | |
25 | ZHANG Y B, LIU J C, SU Z J, et al. Preparation of low-temperature composite phase change materials (C-PCMs) from modified blast furnace slag (MBFS)[J]. Construction and Building Materials, 2020, 238: doi:10.1016/j.conbuildmat.2019.117717. |
26 | 张浩, 杨刚, 龙红明. 改性钢渣基相变微粉的制备与性能[J]. 过程工程学报, 2017, 17(6): 1304-1309. |
ZHANG H, YANG G, LONG H M. Preparation and performance of modified steel slag-based phase change powders[J]. The Chinese Journal of Process Engineering, 2017, 17(6): 1304-1309. | |
27 | 方圆, 吴旻, 唐刚. 改性钢渣基相变储能型丁苯橡胶的制备及其性能研究[J]. 硅酸盐通报, 2018, 37(11): 3669-3673, 3683. |
FANG Y, WU M, TANG G. Preparation of modified steel slag-based phase change energy storage styrene butadiene rubber and its properties[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(11): 3669-3673, 3683. | |
28 | MEMON S A, LO T Y, BARBHUIYA S A, et al. Development of form-stable composite phase change material by incorporation of dodecyl alcohol into ground granulated blast furnace slag[J]. Energy and Buildings, 2013, 62: 360-367. |
29 | ZHANG Y B, LIU J C, SU Z J, et al. Utilizing blast furnace slags (BFS) to prepare high-temperature composite phase change materials (C-PCMs)[J]. Construction and Building Materials, 2018, 177: 184-191. |
30 | WANG J L, WANG Y, HUANG Y. Synthesis and characterization of form-stable carbonate/steel slag composite materials for thermal energy storage[J]. Journal of Energy Storage, 2022, 52: doi:10.1016/j.est.2022.104708. |
31 | GROEN J C, PEFFER L A A, PÉREZ-RAMı́REZ J. Pore size determination in modified micro-and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis[J]. Microporous and Mesoporous Materials, 2003, 60(1/2/3): 1-17. |
[1] | Hong LI, Qiang ZHANG. A review of energy storage science and technology projects supported by national key R&D program [J]. Energy Storage Science and Technology, 2022, 11(9): 2691-2701. |
[2] | Jinpeng HAO, Yingchun DU, Hong WU, Kun HE, Lei WANG. Numerical investigation of electrohydrodynamic solid-liquid phase change in square enclosure with sinusoidal temperature distribution [J]. Energy Storage Science and Technology, 2022, 11(5): 1446-1454. |
[3] | Shuankui LI, Yuan LIN, Feng PAN. Research progress in thermal energy storage and conversion technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562. |
[4] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[5] | Bohui LU, Zhicheng SHI, Yongxue ZHANG, Hongyu ZHAO, Zixi WANG. Investigation of the charging and discharging performance of paraffin/nano-Fe3O4 composite phase change material in a shell and tube thermal energy storage unit [J]. Energy Storage Science and Technology, 2021, 10(5): 1709-1719. |
[6] | Dehou XU, Xuezhi ZHOU, Yujie XU, Zhitao ZUO, Haisheng CHEN. Performance law of a new composite seasonal underground thermal storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1768-1776. |
[7] | Yuting WU, Subudao MING, Cancan ZHANG, Yuanwei LU. Experimental research of the thermophysical properties of ternary mixed carbonate molten salts [J]. Energy Storage Science and Technology, 2021, 10(4): 1292-1296. |
[8] | LING Haoshu, HE Jingdong, XU Yujie, WANG Liang, CHEN Haisheng. Status and prospect of thermal energy storage technology for clean heating [J]. Energy Storage Science and Technology, 2020, 9(3): 861-868. |
[9] | ZHAN Yuanjie, WU Yida, MA Xiaowei, LIANG Haicong, HUANG Xuejie. 4.5 V Li-ion battery with a carbonate ester-based electrolyte [J]. Energy Storage Science and Technology, 2020, 9(2): 319-330. |
[10] | ZHANG Cancan, WU Yuting, LU Yuanwei. Preparation and comparative analysis of thermophysical properties on low melting point mixed nitrate molten salts [J]. Energy Storage Science and Technology, 2020, 9(2): 435-439. |
[11] | TONG Shanhu, NIE Binjian, LI Zixiao, JIN Yi, DING Yulong, HU Hongli. Investigation of the cold thermal energy storage reefer container for cold chain application [J]. Energy Storage Science and Technology, 2020, 9(1): 211-216. |
[12] | JIN Guang, XIAO Anru, LIU Mengyun. Research progress on heat transfer enhancement technology of phase change energy storage [J]. Energy Storage Science and Technology, 2019, 8(6): 1107-1115. |
[13] | YANG Zhishun, CHEN Lihua, XIA Zhenhua. Numerical investigation of the thermal mechanism of the solid-liquid phase changing process [J]. Energy Storage Science and Technology, 2019, 8(6): 1217-1223. |
[14] | JIN Guang, ZHAO Wenxiu, ZHAO Jun, GUO Shaopeng. Development and research status on the technology of direct contact thermal energy storage [J]. Energy Storage Science and Technology, 2019, 8(3): 477-487. |
[15] | HE Feng, LI Tingxian, YAO Jinyu, WANG Ruzhu. Solar multi-mode heating system based on latent heat thermal energy storage and its application [J]. Energy Storage Science and Technology, 2019, 8(2): 311-318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||