Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (5): 1551-1562.doi: 10.19799/j.cnki.2095-4239.2021.0530
• Energy Storage System and Engineering • Previous Articles Next Articles
Shuankui LI1(), Yuan LIN2, Feng PAN1()
Received:
2021-10-14
Revised:
2021-11-17
Online:
2022-05-05
Published:
2022-05-07
Contact:
Feng PAN
E-mail:lishuankui@pkusz.edu.cn;panfeng@ @pkusz.edu.cn
CLC Number:
Shuankui LI, Yuan LIN, Feng PAN. Research progress in thermal energy storage and conversion technology[J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562.
Table 2
Performance comparison of common sensible heat storage materials"
类型 | 储热材料 | 工作温度/℃ | 平均密度/(kg/m3) | 平均热导率/[W/(m·K] | 平均比热容/[kJ/(kg·℃)] | 储能密度/(kWh/m3) | 蓄热成本/[$/(kWh)] |
---|---|---|---|---|---|---|---|
固体材料 | 混凝土 | 200~400 | 2200 | 1.5 | 0.85 | 100 | 1 |
氯化钠 | 200~500 | 2160 | 7.0 | 0.85 | 150 | 2 | |
铸铁 | 200~400 | 7200 | 37 | 0.56 | 160 | 32 | |
耐火硅砖 | 200~700 | 1820 | 1.5 | 1.00 | 150 | 7.0 | |
耐火镁砖 | 200~1200 | 3000 | 7.0 | 1.15 | 600 | 6.0 | |
液体材料 | 矿物油 | 200~300 | 770 | 0.12 | 2.6 | 55 | 4.2 |
硅油 | 300~400 | 900 | 0.1 | 2.1 | 52 | 80 | |
硝酸盐 | 265~565 | 1870 | 0.52 | 250 | 250 | 3.7 | |
液态钠 | 270~530 | 850 | 71 | 80 | 80 | 21 |
Table 3
Performance comparison of common phase change heat storage materials"
类型 | 储热材料 | 相变温度/℃ | 相变潜热/(J/g) | 材料密度/(g/cm³) | 材料储能密度/(kWh/m3) |
---|---|---|---|---|---|
有机类 | 聚乙烯 | 125.0 | 210~230 | 0.962 | 56.1~61.4 |
新戊二醇 | 44.1 | 116.5 | 1.06 | 34.3 | |
石蜡(CnH2n+2) | 75.9 | 170~269 | 约0.9 | 37.7~67.0 | |
硬脂酸(18) | 69.4 | 199 | 0.9 | 49.75 | |
熔融盐类 | NaNO3/KNO3(70/30) | 220~260 | 145 | 约2.2 | 88.6 |
KNO3/Mg(NO3)(20/10) | 195.68 | 59.2 | 约1.6 | 26.3 | |
合金类 | 56Si-44Mg | 946 | 757 | 1.90 | 399.5 |
49Al-51Si | 579 | 515 | 2.25 | 321.9 | |
78.55Ga-21.45In | 15.7 | 69.7 | 6.197 | 120.0 | |
60Sn-40Bi | 138~170 | 44.4 | 8.12 | 100.1 |
1 | HERRMANN U, KEARNEY D W. Survey of thermal energy storage for parabolic trough power plants[J]. Journal of Solar Energy Engineering, 2002, 124(2): 145-152. |
2 | DUNN R I, HEARPS P J, WRIGHT M N. Molten-salt power towers: Newly commercial concentrating solar storage[J]. Proceedings of the IEEE, 2012, 100(2): 504-515. |
3 | 左远志, 丁静, 杨晓西. 蓄热技术在聚焦式太阳能热发电系统中的应用现状[J]. 化工进展, 2006, 25(9): 995-1000, 1030. |
ZUO Y Z, DING J, YANG X X. Current status of thermal energy storage technologies used for concentrating solar power systems[J]. Chemical Industry and Engineering Progress, 2006, 25(9): 995-1000, 1030. | |
4 | MÜLLER D, KNOLL C, GRAVOGL G, et al. Medium-temperature thermochemical energy storage with transition metal ammoniates-A systematic material comparison[J]. Applied Energy, 2021, 285: doi: 10.1016/j.apenergy.2021.116470. |
5 | KHAMLICH I, ZENG K, FLAMANT G, et al. Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market[J]. Renewable and Sustainable Energy Reviews, 2021, 139: doi:10.1016/j.rser. 2020.110583. |
6 | WANG S, ASSELINEAU C A, WANG Y, et al. Performance enhancement of cavity receivers with spillage skirts and secondary reflectors in concentrated solar dish and tower systems[J]. Solar Energy, 2020, 208: 708-727. |
7 | 蔺文静, 刘志明, 王婉丽, 等. 中国地热资源及其潜力评估[J]. 中国地质, 2013, 40(1): 312-321. |
LIN W J, LIU Z M, WANG W L, et al. The assessment of geothermal resources potential of China[J]. Geology in China, 2013, 40(1): 312-321. | |
8 | 张金华, 魏伟. 我国的地热资源分布特征及其利用[J]. 中国国土资源经济, 2011, 24(8): 23-24, 28, 54. |
ZHANG J H, WEI W. Discussion on distribution characteristics and utilization of geothermal resources in China[J]. Natural Resource Economics of China, 2011, 24(8): 23-24, 28, 54. | |
9 | 胡连营. 地源热泵技术讲座(一)地源热泵技术及其发展概况[J]. 可再生能源, 2008, 26(1): 115-117. |
10 | 朱守义. 地热供暖优势分析[J]. 科技致富向导, 2011(9): 184. |
11 | ZINKLE S J, WAS G S. Materials challenges in nuclear energy[J]. Acta Materialia, 2013, 61(3): 735-758. |
12 | KONING A J, ROCHMAN D. Towards sustainable nuclear energy: Putting nuclear physics to work[J]. Annals of Nuclear Energy, 2008, 35(11): 2024-2030. |
13 | MENYAH K, WOLDE-RUFAEL Y. CO2 emissions, nuclear energy, renewable energy and economic growth in the US[J]. Energy Policy, 2010, 38(6): 2911-2915. |
14 | JOUHARA H, KHORDEHGAH N, ALMAHMOUD S, et al. Waste heat recovery technologies and applications[J]. Thermal Science and Engineering Progress, 2018, 6: 268-289. |
15 | FORMAN C, MURITALA I K, PARDEMANN R, et al. Estimating the global waste heat potential[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1568-1579. |
16 | JOUHARA H, OLABI A G. Editorial: Industrial waste heat recovery[J]. Energy, 2018, 160: 1-2. |
17 | HUNG T C, SHAI T Y, WANG S K. A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat[J]. Energy, 1997, 22(7): 661-667. |
18 | HASNAIN S M. Review on sustainable thermal energy storage technologies, Part I: Heat storage materials and techniques[J]. Energy Conversion and Management, 1998, 39(11): 1127-1138. |
19 | BAUER T, PFLEGER N, BREIDENBACH N, et al. Material aspects of Solar Salt for sensible heat storage[J]. Applied Energy, 2013, 111: 1114-1119. |
20 | DINCER I, DOST S, LI X G. Performance analyses of sensible heat storage systems for thermal applications[J]. International Journal of Energy Research, 1997, 21(12): 1157-1171. |
21 | FERNANDEZ A I, MARTÍNEZ M, SEGARRA M, et al. Selection of materials with potential in sensible thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2010, 94(10): 1723-1729. |
22 | LUZZI A, LOVEGROVE K, FILIPPI E, et al. Techno-economic analysis of a 10 m We solar thermal power plant using ammonia-based thermochemical energy storage[J]. Solar Energy, 1999, 66(2): 91-101. |
23 | 吴娟, 龙新峰. 太阳能热化学储能研究进展[J]. 化工进展, 2014, 33(12): 3238-3245. |
WU J, LONG X F. Research progress of solar thermochemical energy storage[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3238-3245. | |
24 | ACEM Z, LOPEZ J, PALOMO DEL BARRIO E. KNO3/NaNO3-Graphite materials for thermal energy storage at high temperature: Part I. Elaboration methods and thermal properties[J]. Applied Thermal Engineering, 2010, 30(13): 1580-1585. |
25 | LI G. Sensible heat thermal storage energy and exergy performance evaluations[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 897-923. |
26 | WU G, ZENG M, PENG L L, et al. China׳s new energy development: Status, constraints and reforms[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 885-896. |
27 | GIL A, MEDRANO M, MARTORELL I, et al. State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 31-55. |
28 | LAING D, STEINMANN W D, TAMME R, et al. Solid media thermal storage for parabolic trough power plants[J]. Solar Energy, 2006, 80(10): 1283-1289. |
29 | SHIN D, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat and Mass Transfer, 2011, 54(5/6): 1064-1070. |
30 | PACHECO J E, SHOWALTER S K, KOLB W J. Development of a molten-salt thermocline thermal storage system for parabolic trough plants[J]. Journal of Solar Energy Engineering, 2002, 124(2): 153-159. |
31 | FARID M M, KHUDHAIR A M, RAZACK S A K, et al. A review on phase change energy storage: Materials and applications[J]. Energy Conversion and Management, 2004, 45(9/10): 1597-1615. |
32 | THIRUGNANAM C, KARTHIKEYAN S, KALAIMURUGAN K. Study of phase change materials and its application in solar cooker[J]. Materials Today: Proceedings, 2020, 33: 2890-2896. |
33 | ZHOU Y C, WU S Q, MA Y, et al. Recent advances in organic/composite phase change materials for energy storage[J]. ES Energy & Environment, 2020, 9: 28-40. |
34 | AGYENIM F, HEWITT N, EAMES P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 615-628. |
35 | ORÓ E, DE GRACIA A, CASTELL A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications[J]. Applied Energy, 2012, 99: 513-533. |
36 | ZHANG S, NIU J L. Experimental investigation of effects of supercooling on microencapsulated phase-change material (MPCM) slurry thermal storage capacities[J]. Solar Energy Materials and Solar Cells, 2010, 94(6): 1038-1048. |
37 | LI M, WU Z S, KAO H T, et al. Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material[J]. Energy Conversion and Management, 2011, 52(11): 3275-3281. |
38 | 戴远哲, 唐波, 李旭飞, 等. 相变蓄热材料研究进展[J]. 化学通报, 2019, 82(8): 717-724, 730. |
DAI Y Z, TANG B, LI X F, et al. Research progress in phase change heat storage materials[J]. Chemistry, 2019, 82(8): 717-724, 730. | |
39 | WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review[J]. Energy Storage Materials, 2020, 25: 251-295. |
40 | ZHANG S, FENG D L, SHI L, et al. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2021, 135: doi: 10.1016/j.rser.2020.110127. |
41 | CARABALLO A, GALÁN-CASADO S, CABALLERO Á, et al. Molten salts for sensible thermal energy storage: A review and an energy performance analysis[J]. Energies, 2021, 14(4): 1197. |
42 | MANTHA D, WANG T, REDDY R G. Thermodynamic modeling of eutectic point in the LiNO3-NaNO3-KNO3 ternary system[J]. Journal of Phase Equilibria and Diffusion, 2012, 33(2): 110-114. |
43 | XU F, WANG J T, ZHU X M, et al. Thermodynamic modeling and experimental verification of a NaNO3-KNO3-LiNO3-Ca(NO3)2 system for solar thermal energy storage[J]. New Journal of Chemistry, 2017, 41(18): 10376-10382. |
44 | FARAJ K, KHALED M, FARAJ J, et al. Phase change material thermal energy storage systems for cooling applications in buildings: A review[J]. Renewable and Sustainable Energy Reviews, 2020, 119: doi:10.1016/j.rser.2019.109579. |
45 | SIMPSON R E, FONS P, KOLOBOV A V, et al. Interfacial phase-change memory[J]. Nature Nanotechnology, 2011, 6: 501-505. |
46 | KENISARIN M M. High-temperature phase change materials for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2010, 14(3): 955-970. |
47 | SHI J N, GER M D, LIU Y M, et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J]. Carbon, 2013, 51: 365-372. |
48 | XIAO X, ZHANG P, LI M. Preparation and thermal characterization of paraffin/metal foam composite phase change material[J]. Applied Energy, 2013, 112: 1357-1366. |
49 | GEORGE M, PANDEY A K, ABD RAHIM N, et al. A novel polyaniline (PANI)/paraffin wax nano composite phase change material: Superior transition heat storage capacity, thermal conductivity and thermal reliability[J]. Solar Energy, 2020, 204: 448-458. |
50 | LI M, WU Z S, TAN J M. Heat storage properties of the cement mortar incorporated with composite phase change material[J]. Applied Energy, 2013, 103: 393-399. |
51 | BARAN G, SARI A. Phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as PCM in a latent heat storage system[J]. Energy Conversion and Management, 2003, 44(20): 3227-3246. |
52 | WEN R L, ZHANG X G, HUANG Y T, et al. Preparation and properties of fatty acid eutectics/expanded perlite and expanded vermiculite shape-stabilized materials for thermal energy storage in buildings[J]. Energy and Buildings, 2017, 139: 197-204. |
53 | PÉREZ-LOMBARD L, ORTIZ J, POUT C. A review on buildings energy consumption information[J]. Energy and Buildings, 2008, 40(3): 394-398. |
54 | DINCER I. On thermal energy storage systems and applications in buildings[J]. Energy and Buildings, 2002, 34(4): 377-388. |
55 | DELGADO M, LÁZARO A, MAZO J, et al. Review on phase change material emulsions and microencapsulated phase change material slurries: Materials, heat transfer studies and applications[J]. Renewable and Sustainable Energy Reviews, 2012, 16(1): 253-273. |
56 | YAN T, WANG R Z, LI T X, et al. A review of promising candidate reactions for chemical heat storage[J]. Renewable and Sustainable Energy Reviews, 2015, 43: 13-31. |
57 | AYDIN D, CASEY S P, RIFFAT S. The latest advancements on thermochemical heat storage systems[J]. Renewable and Sustainable Energy Reviews, 2015, 41: 356-367. |
58 | JITHEESH E V, JOSEPH M, SAJITH V. Comparison of metal oxide and composite phase change material based nanofluids as coolants in mini channel heat sink[J]. International Communications in Heat and Mass Transfer, 2021, 127: doi:10.1016/j.icheatmasstransfer. 2021.105541. |
59 | Sarbu I, Sebarchievici C. A comprehensive review of thermal energy storage[J]. Sustainability, 2018, 10(1): 191. |
60 | PENG X Y, BAJAJ I, YAO M, et al. Solid-gas thermochemical energy storage strategies for concentrating solar power: Optimization and system analysis[J]. Energy Conversion and Management, 2021, 245: doi:10.1016/j.enconman.2021.114636. |
61 | BEEKMAN M, MORELLI D T, NOLAS G S. Better thermoelectrics through glass-like crystals[J]. Nature Materials, 2015, 14: 1182-1185. |
62 | LIAO B L, CHEN G. Nanocomposites for thermoelectrics and thermal engineering[J]. MRS Bulletin, 2015, 40(9): 746-752. |
63 | CHEN W Y, SHI X L, ZOU J, et al. Wearable fiber-based thermoelectrics from materials to applications[J]. Nano Energy, 2021, 81: 105684. |
64 | CARRILLO A J, GONZÁLEZ-AGUILAR J, ROMERO M, et al. Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials[J]. Chemical Reviews, 2019, 119(7): 4777-4816. |
65 | SHARMA A, CHEN C R, MURTY V V S, et al. Solar cooker with latent heat storage systems: A review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(6/7): 1599-1605. |
66 | TRITT T M, BÖTTNER H, CHEN L D. Thermoelectrics: direct solar thermal energy conversion[J]. MRS Bulletin, 2008, 33(4): 366-368. |
67 | BERETTA D, NEOPHYTOU N, HODGES J M, et al. Thermoelectrics: From history, a window to the future[J]. Materials Science and Engineering: Reports, 2019, 138: 100501. |
68 | LI S K, CHU M H, ZHU W M, et al. Atomic-scale tuning of oxygen-doped Bi2Te2.7Se0.3 to simultaneously enhance the Seebeck coefficient and electrical conductivity[J]. Nanoscale, 2020, 12(3): 1580-1588. |
69 | LI S K, HUANG Z Y, WANG R, et al. Highly distorted grain boundary with an enhanced carrier/phonon segregation effect facilitates high-performance thermoelectric materials[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51018-51027. |
70 | LI S K, WANG R, ZHU W M, et al. Achieving high thermoelectric performance by introducing 3D atomically thin conductive framework in porous Bi2Te2.7Se0.3-carbon nanotube hybrids[J]. Advanced Electronic Materials, 2020, 6(8): 2000292. |
71 | ZHAO L D, DRAVID V P, KANATZIDIS M G. The panoscopic approach to high performance thermoelectrics[J]. Energy Environ Sci, 2014, 7(1): 251-268. |
72 | SHI X L, CHEN W Y, ZHANG T, et al. Fiber-based thermoelectrics for solid, portable, and wearable electronics[J]. Energy & Environmental Science, 2021, 14(2): 729-764. |
73 | VINING C B. An inconvenient truth about thermoelectrics[J]. Nature Materials, 2009, 8(2): 83-85. |
74 | ZHAO D L, TAN G. A review of thermoelectric cooling: Materials, modeling and applications[J]. Applied Thermal Engineering, 2014, 66(1/2): 15-24. |
75 | LIU W S, HU J Z, ZHANG S M, et al. New trends, strategies and opportunities in thermoelectric materials: A perspective[J]. Materials Today Physics, 2017, 1: 50-60. |
76 | SHI X, CHEN L. Thermoelectric materials step up[J]. Nature Materials, 2016, 15: 691-692. |
77 | LI S K, HUANG Z Y, WANG R, et al. Precision grain boundary engineering in commercial Bi2Te2.7Se0.3 thermoelectric materials towards high performance[J]. Journal of Materials Chemistry A, 2021, 9(18): 11442-11449. |
78 | LI S K, CHU M H, ZHU W M, et al. Atomic-scale tuning of oxygen-doped Bi2Te2.7Se0.3 to simultaneously enhance the Seebeck coefficient and electrical conductivity[J]. Nanoscale, 2020, 12(3): 1580-1588. |
79 | LI S K, LIU Y D, LIU F S, et al. Effective atomic interface engineering in Bi2Te2.7Se0.3 thermoelectric material by atomic-layer-deposition approach[J]. Nano Energy, 2018, 49: 257-266. |
80 | ZHENG J C. Recent advances on thermoelectric materials[J]. Frontiers of Physics in China, 2008, 3(3): 269-279. |
81 | LI C C, JIANG F X, LIU C C, et al. Present and future thermoelectric materials toward wearable energy harvesting[J]. Applied Materials Today, 2019, 15: 543-557. |
[1] | Jinpeng HAO, Yingchun DU, Hong WU, Kun HE, Lei WANG. Numerical investigation of electrohydrodynamic solid-liquid phase change in square enclosure with sinusoidal temperature distribution [J]. Energy Storage Science and Technology, 2022, 11(5): 1446-1454. |
[2] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[3] | Bohui LU, Zhicheng SHI, Yongxue ZHANG, Hongyu ZHAO, Zixi WANG. Investigation of the charging and discharging performance of paraffin/nano-Fe3O4 composite phase change material in a shell and tube thermal energy storage unit [J]. Energy Storage Science and Technology, 2021, 10(5): 1709-1719. |
[4] | Dehou XU, Xuezhi ZHOU, Yujie XU, Zhitao ZUO, Haisheng CHEN. Performance law of a new composite seasonal underground thermal storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1768-1776. |
[5] | Yuting WU, Subudao MING, Cancan ZHANG, Yuanwei LU. Experimental research of the thermophysical properties of ternary mixed carbonate molten salts [J]. Energy Storage Science and Technology, 2021, 10(4): 1292-1296. |
[6] | LING Haoshu, HE Jingdong, XU Yujie, WANG Liang, CHEN Haisheng. Status and prospect of thermal energy storage technology for clean heating [J]. Energy Storage Science and Technology, 2020, 9(3): 861-868. |
[7] | ZHANG Cancan, WU Yuting, LU Yuanwei. Preparation and comparative analysis of thermophysical properties on low melting point mixed nitrate molten salts [J]. Energy Storage Science and Technology, 2020, 9(2): 435-439. |
[8] | TONG Shanhu, NIE Binjian, LI Zixiao, JIN Yi, DING Yulong, HU Hongli. Investigation of the cold thermal energy storage reefer container for cold chain application [J]. Energy Storage Science and Technology, 2020, 9(1): 211-216. |
[9] | JIN Guang, XIAO Anru, LIU Mengyun. Research progress on heat transfer enhancement technology of phase change energy storage [J]. Energy Storage Science and Technology, 2019, 8(6): 1107-1115. |
[10] | YANG Zhishun, CHEN Lihua, XIA Zhenhua. Numerical investigation of the thermal mechanism of the solid-liquid phase changing process [J]. Energy Storage Science and Technology, 2019, 8(6): 1217-1223. |
[11] | JIN Guang, ZHAO Wenxiu, ZHAO Jun, GUO Shaopeng. Development and research status on the technology of direct contact thermal energy storage [J]. Energy Storage Science and Technology, 2019, 8(3): 477-487. |
[12] | HE Feng, LI Tingxian, YAO Jinyu, WANG Ruzhu. Solar multi-mode heating system based on latent heat thermal energy storage and its application [J]. Energy Storage Science and Technology, 2019, 8(2): 311-318. |
[13] | HU Xiao, YANG Cenyu, CHEN Lei, XING Zuoxia, ZHAO Haichuan, XU Guizhi. A finite element analysis of thermal stress in an external resistant based regenerator [J]. Energy Storage Science and Technology, 2019, 8(2): 333-337. |
[14] | WANG Chuhang, XU Bo, ZHOU Chong, ZOU Yang, YU Xiaohan. Modelling and simulation of a molten salt loop of a solar tower power plant in a Modelica environment [J]. Energy Storage Science and Technology, 2018, 7(4): 674-681. |
[15] | YUAN Shuangchen1, CAI Shengxia2, WANG Shouxiang1, HUANG Bibin3. Economic modeling and analysis of user-side electrical/thermal comprehensive energy storage system [J]. Energy Storage Science and Technology, 2017, 6(5): 1099-1104. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||