Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (6): 1840-1853.doi: 10.19799/j.cnki.2095-4239.2023.0181
• Energy Storage System and Engineering • Previous Articles Next Articles
Xiaoxia SUN1(), Zhonghua GUI1, Ziyu GAO2,3, Bingqian ZHOU2,3, Xia LIU2, Xinjing ZHANG2,3,4(), Huan GUO2,3, Wen LI2,3, Yong SHENG2,3, Yangli ZHU2,3, Jian ZHOU1, Yujie XU2,3
Received:
2023-03-27
Revised:
2023-04-03
Online:
2023-06-05
Published:
2023-06-21
Contact:
Xinjing ZHANG
E-mail:sunxiaoxia520@126.com;zhangxinjing@iet.cn
CLC Number:
Xiaoxia SUN, Zhonghua GUI, Ziyu GAO, Bingqian ZHOU, Xia LIU, Xinjing ZHANG, Huan GUO, Wen LI, Yong SHENG, Yangli ZHU, Jian ZHOU, Yujie XU. Dynamic characteristics of compressed air energy storage system[J]. Energy Storage Science and Technology, 2023, 12(6): 1840-1853.
1 | 陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术, 2021, 10(5): 1477-1485. |
CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485. | |
2 | 何京东, 曹大泉, 段晓男, 等. 发挥国家战略科技力量作用, 为"双碳"目标提供有力科技支撑[J]. 中国科学院院刊, 2022, 37(4): 415-422. |
HE J D, CAO D Q, DUAN X N, et al. Give full play to national strategic S & T force to provide vigorous support for carbon peak and carbon neutrality goals[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 415-422. | |
3 | 郑琼, 江丽霞, 徐玉杰, 等. 碳达峰、碳中和背景下储能技术研究进展与发展建议[J]. 中国科学院院刊, 2022, 37(4): 529-540. |
ZHENG Q, JIANG L X, XU Y J, et al. Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 529-540. | |
4 | 朱汉雄, 王一, 茹加, 等. "双碳"目标下推动能源技术区域综合示范的路径思考[J]. 中国科学院院刊, 2022, 37(4): 559-566. |
ZHU H X, WANG Y, RU J, et al. Thoughts on regional path of promoting comprehensive demonstration of low-carbon energy technology under"dual carbon"Goals[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4): 559-566. | |
5 | KITTNER N, LILL F, KAMMEN D M. Energy storage deployment and innovation for the clean energy transition[J]. Nature Energy, 2017, 2(9): 1-6. |
6 | U.S. Department of Energy. Energy storage grand challenge: Energy storage market report[R]. Washington: 2020. |
7 | 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展[J]. 储能科学与技术, 2022, 11(3): 1052-1076. |
CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021[J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. | |
8 | ANEKE M, WANG M H. Energy storage technologies and real life applications-A state of the art review[J]. Applied Energy, 2016, 179: 350-377. |
9 | OLABI A G, WILBERFORCE T, RAMADAN M, et al. Compressed air energy storage systems: Components and operating parameters-A review[J]. Journal of Energy Storage, 2021, 34: doi: 10.1016/j.est.2020.102000. |
10 | BUDT M, WOLF D, SPAN R, et al. A review on compressed air energy storage: Basic principles, past milestones and recent developments[J]. Applied Energy, 2016, 170: 250-268. |
11 | 杜鹏, 崔浩杰. 压缩空气储能商业电站在山东肥城并网[N]. 国家电网报, 2021-08-09(003). doi: 10.28266/n.cnki.ngjdw.2021.002847. |
12 | 郗向丽. 助力双碳目标, 压缩空气储能正当时——专访中储国能(北京)技术有限公司CEO纪律先生[J]. 储能科学与技术, 2021, 10(3): 1215-1218. |
13 | 李扬, 张新敬, 宋健斐, 等. 压缩空气储能系统释能过程动态调控[J]. 储能科学与技术, 2021, 10(5): 1514-1523. |
14 | ZHANG L, ZHENG Z, ZHANG Q, et al. Study of rotating stall in a centrifugal compressor with wide vaneless diffuser[J]. Journal of Thermal Science, 2020, 29(3): 743-752. |
15 | 郭欢, 徐玉杰, 张新敬, 等. 蓄热式压缩空气储能系统变工况特性[J]. 中国电机工程学报, 2019, 39(5): 1366-1377. |
GUO H, XU Y J, ZHANG X J, et al. Off-design performance of compressed air energy storage system with thermal storage[J]. Proceedings of the CSEE, 2019, 39(5): 1366-1377. | |
16 | HAN Z H, GUO S C. Investigation of operation strategy of combined cooling, heating and power(CCHP) system based on advanced adiabatic compressed air energy storage[J]. Energy, 2018, 160: 290-308. |
17 | GUO Z G, DENG G Y, FAN Y C, et al. Performance optimization of adiabatic compressed air energy storage with ejector technology[J]. Applied Thermal Engineering, 2016, 94: 193-197. |
[1] | Jiajun ZHANG, Xiaoqiong LI, Zhentao ZHANG, Jiahao HAO, Pingyang ZHENG, Ze YU, Junling YANG, Yanan JING, Yunkai YUE. Research progress of compressed carbon dioxide energy storage system [J]. Energy Storage Science and Technology, 2023, 12(6): 1928-1945. |
[2] | Yonghong XU, Yuting WU, Hongguang ZHANG, Fubin YANG, Yan WANG. Experimental study on a micro-compressed air energy storage system based on a pneumatic motor [J]. Energy Storage Science and Technology, 2023, 12(6): 1854-1861. |
[3] | Weiling ZHANG, Han GU, Chao ZHANG, Ang GE, Yuanxu YING. Technical economic characteristics and development trends of compressed air energy storage [J]. Energy Storage Science and Technology, 2023, 12(4): 1295-1301. |
[4] | Qihui YU, Zhigang WEI, Guoxin SUN, Liang LU. Experimental and performance study of spray heat transfer-based compressed air quasi-isothermal expansion system [J]. Energy Storage Science and Technology, 2023, 12(3): 878-888. |
[5] | WU Yuting, KOU Zhenfeng, ZHANG Cancan, WU Yiyang. Analysis of the dynamic distribution parameters of a solid sodium chloride column heat exchanger [J]. Energy Storage Science and Technology, 2022, 11(6): 1988-1995. |
[6] | Di LIU, Tiantian ZHANG, Yuwei PENG, Xiaomei TANG, Dan WANG, Chengxiong MAO. Shaft modeling and oscillation analysis for expansion process of compressed air energy storage system [J]. Energy Storage Science and Technology, 2022, 11(2): 563-572. |
[7] | Qi XIA, Yang HE, Yujie XU, Haisheng CHEN, Jianqiang DENG. Matching performance between the trigeneration of an adiabatic compressed air energy storage system and load [J]. Energy Storage Science and Technology, 2021, 10(5): 1494-1502. |
[8] | Dingzhang GUO, Zhao YIN, Xuezhi ZHOU, Yujie XU, Yong SHENG, Wenhui SUO, Haisheng CHEN. Status and prospect of gas storage device in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1486-1493. |
[9] | Shenghui ZHOU, Yang HE, Haisheng CHEN, Yujie XU, Jianqiang DENG. Using an ejector to intensify the charging process of a compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1503-1513. |
[10] | Yang LI, Xinjing ZHANG, Jianfei SONG, Xiaoyu LI, Huan GUO, Yujie XU, Haisheng CHEN. Dynamic regulation and control of the discharge process in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1514-1523. |
[11] | Xing WANG, Wen LI, Yangli ZHU, Zhitao ZUO, Haisheng CHEN. Optimal design and flow loss reduction mechanism of bowed guide vane in a CAES axial flow turbine [J]. Energy Storage Science and Technology, 2021, 10(5): 1524-1535. |
[12] | Ran XU, Zhitao ZUO, Ao LI, Xia WANG, Ming CHEN, Haisheng CHEN. Water evolution characteristics of piston compressors under varying operating conditions based on the moisture separation coefficient [J]. Energy Storage Science and Technology, 2021, 10(5): 1556-1564. |
[13] | Shan HU, Chang LIU, Yujie XU, Haisheng CHEN, Huan GUO. Thermo-economic analysis of compressed air energy storage under peak load shaving condition [J]. Energy Storage Science and Technology, 2021, 10(5): 1607-1613. |
[14] | Qihui YU, Li TIAN, Xiaofei LI, Xiaodong LI, Xin TAN, Yeming ZHANG. Compressed air energy storage capacity configuration and economic evaluation considering the uncertainty of wind energy [J]. Energy Storage Science and Technology, 2021, 10(5): 1614-1623. |
[15] | Xiaolu WANG, Huan GUO, Hualiang ZHANG, Yujie XU, Yingjun LIU, Haisheng CHEN. Analysis of energy coupling characteristics between cogeneration units and compressed air energy storage integrated systems in thermal power plants [J]. Energy Storage Science and Technology, 2021, 10(2): 598-610. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||