Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (8): 2424-2434.doi: 10.19799/j.cnki.2095-4239.2023.0289
• Energy Storage Materials and Devices • Previous Articles Next Articles
Jinghao YAN(), Jie LI(), Yiming LI, Xiaoqin SUN(), Lina XI, Changwei JIANG
Received:
2023-04-27
Revised:
2023-05-06
Online:
2023-08-05
Published:
2023-08-23
Contact:
Jie LI, Xiaoqin SUN
E-mail:2510597855@qq.com;lijie@csust.edu.cn;xiaoqinsun@csust.edu.cn
CLC Number:
Jinghao YAN, Jie LI, Yiming LI, Xiaoqin SUN, Lina XI, Changwei JIANG. Numerical simulation study on heat storage performance of composite phase-change units based on gradient-porosity metal foam[J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434.
Table 2
Structural parameters of metal foam considered in this paper"
结构名称 | 案例 | 孔隙率分布 ε 1- ε 2- ε 3 | 孔隙率梯度 |
---|---|---|---|
S0 | S0 | 0.75-0.75-0.75 | 0 |
S1 | S1-1 | 0.77-0.75-0.73 | 0.02 |
S1-2 | 0.79-0.75-0.71 | 0.04 | |
S1-3 | 0.81-0.75-0.69 | 0.06 | |
S1-4 | 0.83-0.75-0.67 | 0.08 | |
S1-5 | 0.85-0.75-0.65 | 0.10 | |
S1-6 | 0.87-0.75-0.73 | 0.12 | |
S2 | S2-1 | 0.73-0.75-0.77 | 0.02 |
S2-2 | 0.71-0.75-0.79 | 0.04 | |
S2-3 | 0.69-0.75-0.81 | 0.06 | |
S2-4 | 0.67-0.75-0.83 | 0.08 | |
S2-5 | 0.65-0.75-0.85 | 0.10 | |
S2-6 | 0.63-0.75-0.87 | 0.12 |
Table 3
Pore parameters used in this paper"
孔隙率 ε | (1/K)/m-2 | C/m-1 | asf /m-1 | 孔隙率 ε | (1/K)/m-2 | C/m-1 | asf /m-1 |
---|---|---|---|---|---|---|---|
0.75 | 139896005.14 | 0.22 | 2318.44 | 0.77 | 118933662.48 | 0.21 | 2220.98 |
0.73 | 163849159.92 | 0.23 | 2411.23 | 0.79 | 100551161.05 | 0.20 | 2117.83 |
0.71 | 191281121.83 | 0.24 | 2500.10 | 0.81 | 84401007.81 | 0.20 | 2007.56 |
0.69 | 222773470.95 | 0.25 | 2585.59 | 0.83 | 70188150.07 | 0.19 | 1888.21 |
0.67 | 259023171.95 | 0.26 | 2668.14 | 0.85 | 57661167.14 | 0.18 | 1757.02 |
0.65 | 300868811.03 | 0.27 | 2748.09 | 0.87 | 46605231.71 | 0.18 | 1610.14 |
0.63 | 349324572.19 | 0.29 | 2825.69 |
1 | 李拴魁, 林原, 潘锋. 热能存储及转化技术进展与展望[J]. 储能科学与技术, 2022, 11(5): 1551-1562. |
LI S K, LIN Y, PAN F. Research progress in thermal energy storage and conversion technology[J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562. | |
2 | LI Z X, AL-RASHED A A A A, ROSTAMZADEH M, et al. Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: Effects of repositioning, thermophysical properties and thickness of PCM[J]. Energy Conversion and Management, 2019, 195: 43-56. |
3 | QU Z G, LI W Q, WANG J L, et al. Passive thermal management using metal foam saturated with phase change material in a heat sink[J]. International Communications in Heat and Mass Transfer, 2012, 39(10): 1546-1549. |
4 | 薛洁, 张军, 杜昭, 等. 新型平底型相变蓄热器蓄热性能的数值模拟[J]. 储能科学与技术, 2022, 11(12): 3855-3861. |
XUE J, ZHANG J, DU Z, et al. Numerical simulation of heat storage performance of a new flat-bottomed phase change heat accumulator[J]. Energy Storage Science and Technology, 2022, 11(12): 3855-3861. | |
5 | YAN S R, ALI FAZILATI M, SAMANI N, et al. Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: A thermo-economic-environmental study[J]. Journal of Energy Storage, 2020, 30: doi: 10.1016/j.est.2020.101445. |
6 | QU Z G, LI W Q, TAO W Q. Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material[J]. International Journal of Hydrogen Energy, 2014, 39(8): 3904-3913. |
7 | MAHDI J M, NSOFOR E C. Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination[J]. Applied Energy, 2017, 191: 22-34. |
8 | KAMKARI B, SHOKOUHMAND H. Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins[J]. International Journal of Heat and Mass Transfer, 2014, 78: 839-851. |
9 | YANG X H, WANG X Y, LIU Z, et al. Influence of aspect ratios for a tilted cavity on the melting heat transfer of phase change materials embedded in metal foam[J]. International Communications in Heat and Mass Transfer, 2021, 122: doi: 10.1016/j.icheatmasstransfer.2021.105127. |
10 | 程文龙, 韦文静. 高孔隙率泡沫金属相变材料储能、传热特性[J]. 太阳能学报, 2007, 28(7): 739-744. |
CHENG W L, WEI W J. Theoretical analysis of phase change material storage with high porosity metal foams[J]. Acta Energiae Solaris Sinica, 2007, 28(7): 739-744. | |
11 | ZHANG Z Q, HE X D. Three-dimensional numerical study on solid-liquid phase change within open-celled aluminum foam with porosity gradient[J]. Applied Thermal Engineering, 2017, 113: 298-308. |
12 | XU Y, REN Q L, ZHENG Z J, et al. Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media[J]. Applied Energy, 2017, 193: 84-95. |
13 | JOSHI V, RATHOD M K. Thermal transport augmentation in latent heat thermal energy storage system by partially filled metal foam: A novel configuration[J]. Journal of Energy Storage, 2019, 22: 270-282. |
14 | YANG X H, WANG W B, YANG C, et al. Solidification of fluid saturated in open-cell metallic foams with graded morphologies[J]. International Journal of Heat and Mass Transfer, 2016, 98: 60-69. |
15 | 宋瀚文, 王子龙, 闫勤学, 等. 石蜡-泡沫铜复合相变蓄热材料热特性的研究[J]. 功能材料, 2021, 52(6): 6102-6109. |
SONG H W, WANG Z L, YAN Q X, et al. Study on thermal characteristics ofparaffin/metal foam composite PCMs[J]. Journal of Functional Materials, 2021, 52(6): 6102-6109. | |
16 | HU X S, GONG X L. Pore-scale numerical simulation of the thermal performance for phase change material embedded in metal foam with cubic periodic cell structure[J]. Applied Thermal Engineering, 2019, 151: 231-239. |
17 | HU X S, ZHU F, GONG X L. Experimental and numerical study on the thermal behavior of phase change material infiltrated in low porosity metal foam[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.101005. |
18 | ZHENG Z J, YANG C, XU Y, et al. Effect of metal foam with two-dimensional porosity gradient on melting behavior in a rectangular cavity[J]. Renewable Energy, 2021, 172: 802-815. |
19 | DUAN J. The PCM-porous system used to cool the inclined PV panel[J]. Renewable Energy, 2021, 180: 1315-1332. |
20 | VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709-1719. |
21 | BHATTACHARYA A, CALMIDI V V, MAHAJAN R L. Thermophysical properties of high porosity metal foams[J]. International Journal of Heat and Mass Transfer, 2002, 45(5): 1017-1031. |
22 | BECKERMANN C, VISKANTA R. Natural convection solid/liquid phase change in porous media[J]. International Journal of Heat and Mass Transfer, 1988, 31(1): 35-46. |
23 | KRISHNAN S, MURTHY J Y, GARIMELLA S V. A two-temperature model for the analysis of passive thermal control systems[J]. Journal of Heat Transfer, 2004, 126(4): 628-637. |
24 | XU Y, LI M J, ZHENG Z J, et al. Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment[J]. Applied Energy, 2018, 212: 868-880. |
[1] | Qi ZHANG, Yinlei LI, Yanfang LI, Jun SONG, Xuehong WU, Chongyang LIU, Xueling ZHANG. Preparation and thermal characterization of expanded graphite/multiwalled carbon nanotube-based eutectic salt-composite phase change materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2435-2443. |
[2] | Man CHEN, Zhixiang CHENG, Chunpeng ZHAO, Peng PENG, Qikai LEI, Kaiqiang JIN, Qingsong WANG. Numerical simulation study on explosion hazards of lithium-ion battery energy storage containers [J]. Energy Storage Science and Technology, 2023, 12(8): 2594-2605. |
[3] | Yuxin CHEN, Jiamu YANG, Cheng LIAN, Honglai LIU. Analysis of stable coating window of lithium battery electrode paste based on phase field models [J]. Energy Storage Science and Technology, 2023, 12(7): 2185-2193. |
[4] | Zian PENG, Wenchao DUAN, Jie LI, Xiaoqin SUN, Mengjie SONG. Energy storage characteristics of a shell-and-tube phase change energy storage heat exchanger for data centers [J]. Energy Storage Science and Technology, 2023, 12(6): 1765-1773. |
[5] | Yongshuai YU, Yongfeng LIU, Pucheng PEI, Lu ZHANG, Shengzhuo YAO. Effect of cathode relative humidity on membrane water content and performance of PEMFC [J]. Energy Storage Science and Technology, 2023, 12(6): 1755-1764. |
[6] | Yuxin CHEN, Jiamu YANG, Dongbo LI, Cheng LIAN, Honglai LIU. Numerical simulation of the vacuum drying process of cylindrical lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1957-1967. |
[7] | Hongbing CHEN, Xuening GAO, Tao LIU, Congcong WANG, Rui ZHAO, Junhui SUN, Chuanling WANG, Di HE. Performance of a solar PV/T system applying a paraffin/graphene oxide composite phase change material [J]. Energy Storage Science and Technology, 2023, 12(3): 661-668. |
[8] | Jinmei DONG, Qiyuan LIU, Fang WU, Lirui JIA, Jing WEN, Chenggong CHANG, Weixin ZHENG, Xueying XIAO. Phase change characteristics and proportion adjustment of fatty acid binary energy storage materials [J]. Energy Storage Science and Technology, 2023, 12(2): 349-356. |
[9] | Zifeng HU, Yaozu XU, Zhenyun DUAN, Xiangdong SHANG, Jingjiu XU. Analysis of the heat storage process of a new heat storage body structure [J]. Energy Storage Science and Technology, 2023, 12(1): 165-171. |
[10] | Sujin GE, Long ZHANG, Xiaohua YANG, Wenhao SHAN, Guangqiang XU. Simulation study on the influence of air supply method on the cooling effect of energy storage battery cluster [J]. Energy Storage Science and Technology, 2023, 12(1): 150-154. |
[11] | Ao TANG, Chuanwei YAN. Modelling and simulation of flow batteries: Recent progress and prospects [J]. Energy Storage Science and Technology, 2022, 11(9): 2866-2878. |
[12] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[13] | Wenlan YE, Ming ZHAO, Mingyu HU, Yang TIAN. Analysis of heat storage and release performance of tube bundle phase change heat accumulator [J]. Energy Storage Science and Technology, 2022, 11(7): 2151-2160. |
[14] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[15] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||