Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (8): 2638-2648.doi: 10.19799/j.cnki.2095-4239.2023.0080
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Yun DI(), Zhengzhu ZHOU, Huihong DANG, Zhihao GE()
Received:
2023-02-17
Revised:
2023-03-30
Online:
2023-08-05
Published:
2023-08-23
Contact:
Zhihao GE
E-mail:diyun@aesit.com.cn;gezhihao@aesit.com.cn
CLC Number:
Yun DI, Zhengzhu ZHOU, Huihong DANG, Zhihao GE. Modeling and verification of electric-thermal coupling in batteries based on ECM[J]. Energy Storage Science and Technology, 2023, 12(8): 2638-2648.
Table 1
Constant-current charge-discharge shelving test Procedures at 25 ℃ and 0.5 C"
步骤 | 程序 | 截止条件 |
---|---|---|
1 | 0.33 C恒流放电(25 ℃) | 电压≤3 V |
2 | 静置(25 ℃) | 时间≥2 h |
3 | 0.5 C恒流充电(25 ℃) | 单步容量≥5.2 Ah |
4 | 静置(25 ℃) | 时间≥1 h |
循环步骤3~4 | … | 循环数≥10 |
S1 | 0.33 C恒流充电(25 ℃) | 电压≥4.2 V |
S2 | 4.2 V恒压充电(25 ℃) | 电流≤0.05 C |
S3 | 静置(25 ℃) | 时间≥2 h |
S4 | 0.5 C恒流放电(25 ℃) | 单步容量≥5.2 Ah |
S5 | 静置(25 ℃) | 时间≥1 h |
循环步骤S4~S5 | … | 循环数≥10 |
倒数第二步 | 0.33 C恒流放电(25 ℃) | 电压≤3 V |
最后一步 | 静置(25 ℃) | 时间≥1 h |
1 | 李斌, 唐连伟, 钟修林. 动力电池包热管理的一维和三维高效耦合仿真[C]// 2019中国汽车工程学会汽车空气动力学分会学术年会论文集. 2019: 98-110. |
2 | 豁长青, 曹铭, 黄菊花, 等. 一种通用的锂电池模型参数辨识方法[J]. 电源技术, 2021, 45(4): 455-458. |
HUO C Q, CAO M, HUANG J H, et al. A general parameter identification method for lithium battery model[J]. Chinese Journal of Power Sources, 2021, 45(4): 455-458. | |
3 | 黄伟, 文华, 李亚胜. 三元软包锂离子动力电池热特性测量及应用[J]. 储能科学与技术, 2019, 8(2): 284-291. |
HUANG W, WEN H, LI Y S. Measurements and application of thermal characteristics of soft-packed NCM lithium-ion power battery[J]. Energy Storage Science and Technology, 2019, 8(2): 284-291. | |
4 | 王芳, 孙智鹏, 林春景, 等. 能量型磷酸铁锂动力电池直流内阻测试及分析[J]. 重庆理工大学学报(自然科学), 2017, 31(8): 44-50. |
WANG F, SUN Z P, LIN C J, et al. Experimental analysis of internal resistance of energy-type LiFePO4 power batteries and its influencing factors[J]. Journal of Chongqing University of Technology (Natural Science), 2017, 31(8): 44-50. | |
5 | 朱志祥, 尚丽平, 屈薇薇. 基于HPPC的锂电池欧姆内阻最优测试条件研究[J]. 电源技术, 2020, 44(6): 841-843, 848. |
ZHU Z X, SHANG L P, QU W W. Study on optimal test conditions of ohmic internal resistance for lithium battery based on HPPC[J]. Chinese Journal of Power Sources, 2020, 44(6): 841-843, 848. | |
6 | ZHU J G, WANG Y X, HUANG Y A, et al. Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation[J]. Nature Communications, 2022, 13: 2261. |
7 | 谢奕展, 程夕明. 锂离子电池简化电化学模型理论误差分析研究[J]. 机械工程学报, 2022, 58(22): 37-55. |
XIE Y Z, CHENG X M. Theoretical error analysis of simplified electrochemical model of lithium ion battery[J]. Journal of Mechanical Engineering, 2022, 58(22): 37-55. | |
8 | 吴小慧, 张兴敢. 锂电池二阶RC等效电路模型参数辨识[J]. 南京大学学报(自然科学), 2020, 56(5): 754-761. |
WU X H, ZHANG X G. Parameters identification of second order RC equivalent circuit model for lithium batteries[J]. Journal of Nanjing University (Natural Science), 2020, 56(5): 754-761. | |
9 | 杨洋. 基于ARIMA和BP神经网络组合模型的锂电池寿命预测[D]. 海口: 海南大学. |
YANG Y. Life prediction of lithium battery based on ARIMA and BP neural network combined model[D]. Haikou: Hainan University. | |
10 | 张涌, 张福明, 吴海啸, 等. 基于改进的二阶阻容等效电路模型的锂电池建模仿真[J]. 物流科技, 2020, 43(1): 59-64. |
ZHANG Y, ZHANG F M, WU H X, et al. Lithium battery modeling and simulation based on improved second-order RC equivalent circuit model[J]. Logistics Sci-Tech, 2020, 43(1): 59-64. | |
11 | JI Y J, QIU S L, LI G. Simulation of second-order RC equivalent circuit model of lithium battery based on variable resistance and capacitance[J]. Journal of Central South University, 2020, 27(9): 2606-2613. |
12 | 詹涵. 基于等效电路模型的锂离子电池成组性能研究[D]. 济南: 山东大学. |
ZHAN H. Research on group performance of lithium-ion batteries based on equivalent circuit model[D]. Jinan: Shandong University. | |
13 | 王宇伟, 赵阳, 华迪, 等. 基于二阶等效电路模型的锂电池状态估计方法研究[J]. 节能, 2022, 41(4): 38-42. |
WANG Y W, ZHAO Y, HUA D, et al. Research on state estimation method of lithium battery based on second-order equivalent circuit model[J]. Energy Conservation, 2022, 41(4): 38-42. | |
14 | 那红军, 王顺利, 李建超. 基于等效建模和参数辩识的锂电池荷电状态估算研究[J]. 电池工业, 2019, 23(6): 289-291, 304. |
NA/NUO) H J, WANG S L, LI J C. Research on estimation of state of charge of lithium battery based on equivalent modeling and parameter identification[J]. Chinese Battery Industry, 2019, 23(6: 289-291, 304. | |
15 | 黄伟男. 基于热电耦合原理的锂离子电池热仿真及在线实现方法研究[D]. 北京: 北京交通大学. |
HUANG W N. Research on thermal simulation and online realization method of lithium ion battery based on thermoelectric coupling principle[D]. Beijing: Beijing Jiaotong University. | |
16 | 毛亚, 白清友, 马尚德, 等. 循环老化对锂离子电池在绝热条件下的产热及热失控影响[J]. 储能科学与技术, 2018, 7(6): 1120-1127. |
MAO Y, BAI Q Y, MA S D, et al. Influence of cycling on the heat-release and thermal runaway of the lithium ion battery under adiabatic condition[J]. Energy Storage Science and Technology, 2018, 7(6): 1120-1127. | |
17 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5-12. |
18 | 韦海燕, 钟腾云, 潘海鸿, 等. 基于改进HPPC锂离子电池内阻测试方法研究[J]. 电源技术, 2019, 43(8): 1309-1311, 1339. |
WEI H Y, ZHONG T Y, PAN H H, et al. Study on measurement method of internal resistance of lithium-ion battery based on improved HPPC[J]. Chinese Journal of Power Sources, 2019, 43(8): 1309-1311, 1339. | |
19 | 李旭. 纯电动汽车锂电池SOC估计算法研究[D]. 西安: 长安大学. |
LI X. Research on SOC estimation algorithm of lithium battery in pure electric vehicle[D]. Xi'an: Changan University. | |
20 | 贾春辉. 动力电池热特性分析及冷却系统优化[D]. 长春: 吉林大学. |
JIA C H. Thermal characteristics analysis and cooling system optimization of power battery[D]. Changchun: Jilin University. | |
21 | 伍佳佳, 赵又群. 基于Thevenin模型的混合动力镍氢电池参数辨识[J]. 农业装备与车辆工程, 2014, 52(1): 1-5. |
WU J J, ZHAO Y Q. Parameter identification of Ni/MH battery used in hybrid electric vehicles based on Thevenin model[J]. Agricultural Equipment & Vehicle Engineering, 2014, 52(1): 1-5. | |
22 | 杨杰, 王婷, 杜春雨, 等. 锂离子电池模型研究综述[J]. 储能科学与技术, 2019, 8(1): 58-64. |
YANG J, WANG T, DU C Y, et al. Overview of the modeling of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(1): 58-64. | |
23 | 李嘉波, 李忠玉, 焦生杰, 等. 基于反馈最小二乘支持向量机锂离子状态估计[J]. 储能科学与技术, 2020, 9(3): 951-957. |
LI J B, LI Z Y, JIAO S J, et al. Lithium-ion state estimation based on feedback least square support vector machine[J]. Energy Storage Science and Technology, 2020, 9(3): 951-957. | |
24 | 段慧云, 徐维, 夏威. 基于最小二乘支持向量回归的锂电池能量状态估计[J]. 电池工业, 2022, 26(5): 240-246. |
DUAN H Y, XU W, XIA W. Energy state estimation of lithium battery based on least squares support vector regression[J]. Chinese Battery Industry, 2022, 26(5): 240-246. | |
25 | 栗欢欢, 竺玉强, 王效宇, 等. 熵热系数取值方式对锂离子电池热模型精度的影响[J]. 重庆理工大学学报(自然科学), 2021, 35(5): 1-8. |
LI H H, ZHU Y Q, WANG X Y, et al. The influence of entropy heat coefficient simplification on the accuracy of thermal model of LIBs[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(5): 1-8. | |
26 | 殷宝华, 艾亮, 贾明, 等. 锂离子动力电池的三维热模型[J]. 电源技术, 2018, 42(2): 199-201, 307. |
YIN B H, AI L, JIA M, et al. 3D thermal model of lithium ion battery[J]. Chinese Journal of Power Sources, 2018, 42(2): 199-201, 307. |
[1] | Yu GUO, Yiwei WANG, Juan ZHONG, Jinqiao DU, Jie TIAN, Yan LI, Fangming JIANG. Fault diagnosis method for microinternal short circuits in lithium-ion batteries based on incremental capacity curve [J]. Energy Storage Science and Technology, 2023, 12(8): 2536-2546. |
[2] | Zhiwei CHEN, Weige ZHANG, Junwei ZHANG, Yanru ZHANG. Comprehensive health assessment and screening method of power battery pack based on visual characteristics of charge curves [J]. Energy Storage Science and Technology, 2023, 12(7): 2211-2219. |
[3] | Birong TAN, Jianhua DU, Xianghu YE, Xin CAO, Chang QU. Overview of SOC estimation methods for lithium-ion batteries based on model [J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. |
[4] | Zhicong LIU, Yanhui ZHANG. Parameter identification and state of charge estimation of lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(11): 3613-3622. |
[5] | Xiaohan LI, Lei SUN, Yong MA, Dongliang GUO, Peng XIAO, Jianjun LIU, Peng WU, Zhihang ZHANG, Xuebing HAN. Energy state estimation of lithium-ion batteries based on sage-husa EKF algorithm [J]. Energy Storage Science and Technology, 2022, 11(11): 3603-3612. |
[6] | Yong LUO, Zhenyu ZHOU, Futao SHEN, Huan HUANG, Xiaobin QIU, yongyong WENG. Electrothermal coupling modeling of battery pack considering time-varying parameters [J]. Energy Storage Science and Technology, 2022, 11(10): 3180-3190. |
[7] | Pu REN, Shunli WANG, Mingfang HE, Yongcun FAN, Wen CAO, Wei XIE. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading [J]. Energy Storage Science and Technology, 2021, 10(2): 738-743. |
[8] | Ran XIONG, Shunli WANG, Chunmei YU, Lili XIA. An estimation method for lithium-ion battery SOC of special robots based on Thevenin model and improved extended Kalman [J]. Energy Storage Science and Technology, 2021, 10(2): 695-704. |
[9] | Banghua DU, Yu ZHANG, Tiezhou WU, Yanlin HE, Zilong LI. An online identification method for equivalent model parameters of aging lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 342-348. |
[10] | FENG Juqiang, SI Yuwen, WU Long, HUANG Kaifeng, ZHANG Xing. Analysis of dynamic battery characteristics based on dynamic synthesis equivalent circuit model [J]. Energy Storage Science and Technology, 2020, 9(3): 986-992. |
[11] | REN Xiaoxia, GUO Wangna. RC equivalent circuit model of lumped parameters for lithium ion batteries in electric vehicles [J]. Energy Storage Science and Technology, 2019, 8(5): 930-934. |
[12] | LUO Hongbin, DENG Linwang, FENG Tianyu, LV Chun. The relationship between internal resistance and discharge rate of LiFePO4 batteries [J]. Energy Storage Science and Technology, 2017, 6(4): 799-805. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||