Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (8): 2626-2637.doi: 10.19799/j.cnki.2095-4239.2023.0142
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Min ZHAO1(), Yang LI1, Jie CAI1, Weibin KANG1, Lei LIU2
Received:
2023-03-15
Revised:
2023-04-02
Online:
2023-08-05
Published:
2023-08-23
Contact:
Min ZHAO
E-mail:13519195028@163.com;@163.com
CLC Number:
Min ZHAO, Yang LI, Jie CAI, Weibin KANG, Lei LIU. Experimental study on the performance of capillary phase-change energy storage tank for civil building[J]. Energy Storage Science and Technology, 2023, 12(8): 2626-2637.
Table 2
Experimental statistics of heat storage and release conditions"
序号 | 蓄热工况 | 放热工况 | ||||||
---|---|---|---|---|---|---|---|---|
进水温度/℃ | 流速/(m/s) | 流量/(L/h) | 流动方向 | 进水温度/℃ | 流速/(m/s) | 流量/(L/h) | 流动方向 | |
X1/F1(实验组) | 65 | 0.025 | 142 | 自下而上 | 25 | 0.020 | 114 | 自下而上 |
X2/F2(对照组) | 70 | 0.025 | 142 | 自下而上 | 30 | 0.020 | 114 | 自下而上 |
X3/F3(实验组) | 75 | 0.025 | 142 | 自下而上 | 35 | 0.020 | 114 | 自下而上 |
X4/F4(实验组) | 70 | 0.015 | 85 | 自下而上 | 30 | 0.015 | 85 | 自下而上 |
X5/F5(实验组) | 70 | 0.035 | 199 | 自下而上 | 30 | 0.025 | 142 | 自下而上 |
X6/F6(实验组) | 70 | 0.025 | 142 | 自上而下 | 30 | 0.025 | 114 | 自上而下 |
1 | 王梅杰, 胡良博. 相变蓄热技术的研究现状及发展趋势[J]. 能源研究与利用, 2021(5): 28-32, 47. |
WANG M J, HU L B. Research status and development trend of phase change heat storage technology[J]. Energy Research & Utilization, 2021(5): 28-32, 47. | |
2 | DINCER I. Thermal energy storage systems as a key technology in energy conservation[J]. International Journal of Energy Research, 2002, 26(7): 567-588. |
3 | 徐治国, 赵长颖, 纪育楠, 等. 中低温相变蓄热的研究进展[J]. 储能科学与技术, 2014, 3(3): 179-190. |
XU Z G, ZHAO C Y, JI Y N, et al. State-of-the-art of phase-change thermal storage at middle-low temperature[J]. Energy Storage Science and Technology, 2014, 3(3): 179-190. | |
4 | 魏高升, 邢丽婧, 杜小泽, 等. 太阳能热发电系统相变储热材料选择及研发现状[J]. 中国电机工程学报, 2014, 34(3): 325-335. |
WEI G S, XING L J, DU X Z, et al. Research status and selection of phase change thermal energy storage materials for CSP systems[J]. Proceedings of the CSEE, 2014, 34(3): 325-335. | |
5 | 孟锋, 安青松, 郭孝峰, 等. 蓄热过程强化技术的应用研究进展[J]. 化工进展, 2016, 35(5): 1273-1282. |
MENG F, AN Q S, GUO X F, et al. A review of process intensification technology in thermal energy storage[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1273-1282. | |
6 | 喻家帮, 牛朝阳, 韦攀, 等. 泡沫金属/翅片填充管蓄热性能的实验研究[J]. 西安交通大学学报, 2019, 53(1): 122-128. |
YU J B, NIU Z Y, WEI P, et al. Experimental investigation on the thermal energy storage performance of metal foam/finned tube[J]. Journal of Xi'an Jiaotong University, 2019, 53(1): 122-128. | |
7 | 崔海亭, 王振辉, 郭彦书, 等. 圆柱形相变蓄热器蓄/放热性能实验研究[J]. 太阳能学报, 2009, 30(10): 1188-1192. |
CUI H T, WANG Z H, GUO Y S, et al. Experimental study on heat performance of new phase change thermal energy storagy unit[J]. Acta Energiae Solaris Sinica, 2009, 30(10): 1188-1192. | |
8 | 叶三宝, 刁彦华, 赵耀华. 新型平板热管相变蓄热器蓄放热性能分析[J]. 电力建设, 2014, 35(7): 136-140. |
YE S B, DIAO Y H, ZHAO Y H. Heat storage-release property of phase-change thermal storage system with new flat heat pipe[J]. Electric Power Construction, 2014, 35(7): 136-140. | |
9 | VYSHAK N R, JILANI G. Numerical analysis of latent heat thermal energy storage system[J]. Energy Conversion and Management, 2007, 48(7): 2161-2168. |
10 | GONG Z X, MUJUMDAR A S. Finite-element analysis of cyclic heat transfer in a shell-and-tube latent heat energy storage exchanger[J]. Applied Thermal Engineering, 1997, 17(6): 583-591. |
11 | 魏云霞, 李德英. 毛细管相变蓄热罐性能实验研究[J]. 建筑节能, 2010, 38(11): 49-52. |
WEI Y X, LI D Y. Experimental research on the properties of the capillary phase-change material heat storage tank[J]. Building Energy Efficiency, 2010, 38(11): 49-52. | |
12 | 魏云霞, 李德英. 毛细管相变蓄能罐在供暖中应用的探讨[J]. 制冷技术, 2010, 30(4): 46-48, 51. |
WEI Y X, LI D Y. Discussion on application of capillary phase- change material storage tank in heating supply system[J]. Refrigeration Technology, 2010, 30(4): 46-48, 51. | |
13 | KOSCHENZ M, LEHMANN B. Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings[J]. Energy and Buildings, 2004, 36(6): 567-578. |
14 | 夏燚, 姚文超, 张小松, 等. 双层相变蓄能地板供冷暖末端设计与模拟[J]. 化工学报, 2014, 65(S2): 240-247. |
XIA Y, YAO W C, ZHANG X S, et al. Design and numerical simulation of floor radiant system with two layer phase change energy storage[J]. CIESC Journal, 2014, 65(S2): 240-247. | |
15 | 王补宣. 工程传热传质学-下册[M]. 2版. 北京: 科学出版社, 2015.WANG B X. Engineering heat and mass transfer-Volume Ⅱ[M]. 2nd ed. Beijing: Science Press, 2015. |
16 | 杨传勇, 王晓东, 徐进良, 等. 超临界CO2管内层流混合对流换热数值模拟[C]//华北电力大学第九届研究生学术交流年会论文集. 华北电力大学, 2011: 120-124. |
17 | 黄娜. 不同流场环境影响下管内气(汽)液两相流动与传热特性的数值研究[D]. 北京: 华北电力大学, 2016. |
HUANG N. Numerical study on gas (vapor)-liquid two-phase flow and heat transfer characteristics in tubes under the influence of different flow fields[D]. Beijing: North China Electric Power University, 2016. | |
18 | ALDOSS T K, RAHMAN M M. Comparison between the single-PCM and multi-PCM thermal energy storage design[J]. Energy Conversion and Management, 2014, 83: 79-87. |
19 | 邱珊珊, 樊洪明, 陈浩南. 翅片微热管式水蓄热系统在北京农村住宅采暖中的应用研究[J]. 建筑科学, 2019, 35(8): 43-49. |
QIU S S, FAN H M, CHEN H N. Application of water heat storage device in Beijing rural residential heating system[J]. Building Science, 2019, 35(8): 43-49. | |
20 | 李迎. 单罐石蜡蓄热系统传热性能实验及模拟研究[D]. 武汉: 武汉科技大学, 2021. |
LI Y. Experimental and simulation study on heat transfer performance of single tank paraffin heat storage system[D]. Wuhan: Wuhan University of Science and Technology, 2021. | |
21 | 程文平, 刘习武, 胡庆松. 关于太阳能相变蓄热系统的研究与分析[J]. 科技创新与应用, 2017(3): 65. |
CHENG W P, LIU X W, HU Q S. Research and analysis on solar phase change thermal storage system[J]. Technology Innovation and Application, 2017(3): 65. | |
22 | 王思雨. 低温相变蓄热式谷电利用装置的实验研究[D]. 南京: 东南大学, 2018.WANG S Y. Experimental study on low temperature phase change regenerative valley power utilization device[D]. Nanjing: Southeast University, 2018. |
[1] | Jinghao YAN, Jie LI, Yiming LI, Xiaoqin SUN, Lina XI, Changwei JIANG. Numerical simulation study on heat storage performance of composite phase-change units based on gradient-porosity metal foam [J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434. |
[2] | Qi ZHANG, Yinlei LI, Yanfang LI, Jun SONG, Xuehong WU, Chongyang LIU, Xueling ZHANG. Preparation and thermal characterization of expanded graphite/multiwalled carbon nanotube-based eutectic salt-composite phase change materials [J]. Energy Storage Science and Technology, 2023, 12(8): 2435-2443. |
[3] | Qi ZHANG, Chongyang LIU, Jun SONG, Xueling ZHANG, Yinlei LI, Yanfang LI. Progress in synthesis and application of microcapsule phase-change materials [J]. Energy Storage Science and Technology, 2023, 12(4): 1110-1130. |
[4] | Hongbing CHEN, Xuening GAO, Tao LIU, Congcong WANG, Rui ZHAO, Junhui SUN, Chuanling WANG, Di HE. Performance of a solar PV/T system applying a paraffin/graphene oxide composite phase change material [J]. Energy Storage Science and Technology, 2023, 12(3): 661-668. |
[5] | Wei LIU, Zhenming LI, Mingyang LIU, Cenyu YANG, Chao MEI, Ying LI. Review of high-temperature phase change heat storage material preparation and applications [J]. Energy Storage Science and Technology, 2023, 12(2): 398-430. |
[6] | Xueqing SHEN, Wei CHEN. Thermal management performance of batteries with embedded tree-like fins for phase transition layers [J]. Energy Storage Science and Technology, 2023, 12(2): 459-467. |
[7] | Jinmei DONG, Qiyuan LIU, Fang WU, Lirui JIA, Jing WEN, Chenggong CHANG, Weixin ZHENG, Xueying XIAO. Phase change characteristics and proportion adjustment of fatty acid binary energy storage materials [J]. Energy Storage Science and Technology, 2023, 12(2): 349-356. |
[8] | Qianjun MAO, Yuanyuan ZHU. Study on heat storage performance of novel bifurcated fins to strengthen shell-and-tube energy storage tanks [J]. Energy Storage Science and Technology, 2023, 12(1): 69-78. |
[9] | Junlei WANG, Diling ZHANG, Kun WANG, Dongdong XU, Xianggui XU, Hua YAO, Wenwei LIU, Yun HUANG. Carbonates/blast furnace slag form-stable phase change materials [J]. Energy Storage Science and Technology, 2022, 11(9): 3028-3034. |
[10] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[11] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[12] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[13] | Jie XUE, Jun ZHANG, Zhao DU, Rukun HU, Xiaohu YANG. A numerical simulation study on the heat-storage performance of a flat-bottom heat storage tank [J]. Energy Storage Science and Technology, 2022, 11(12): 3855-3861. |
[14] | Qi ZHANG, Yujing WANG, Yinlei LI, Chongyang LIU. A novel composite phase change material with cold storage and insulation and its application [J]. Energy Storage Science and Technology, 2022, 11(10): 3133-3141. |
[15] | Jin CHAI, Jun WANG, Qiqiang NI. Experiment on heat transfer performance of phase change materials strengthened by nanoparticles and fins [J]. Energy Storage Science and Technology, 2022, 11(10): 3161-3170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||