Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (12): 3855-3861.doi: 10.19799/j.cnki.2095-4239.2022.0366
• Energy Storage Materials and Devices • Previous Articles Next Articles
Jie XUE1,2(), Jun ZHANG1, Zhao DU1,2, Rukun HU2, Xiaohu YANG2()
Received:
2021-11-30
Revised:
2021-11-30
Online:
2022-12-05
Published:
2022-12-29
Contact:
Xiaohu YANG
E-mail:375255951@qq.com;xiaohuyang@xjtu.edu.cn
CLC Number:
Jie XUE, Jun ZHANG, Zhao DU, Rukun HU, Xiaohu YANG. A numerical simulation study on the heat-storage performance of a flat-bottom heat storage tank[J]. Energy Storage Science and Technology, 2022, 11(12): 3855-3861.
1 | TAO Y B, HE Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245-259. |
2 | 李拴魁, 林原, 潘锋. 热能存储及转化技术进展与展望[J]. 储能科学与技术, 2022, 11(5): 1551-1562. |
LI S K, LIN Y, PAN F. Research progress in thermal energy storage and conversion technology[J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562. | |
3 | 金光, 肖安汝, 刘梦云. 相变储能强化传热技术的研究进展[J]. 储能科学与技术, 2019, 8(6): 1107-1115. |
JIN G, XIAO A R, LIU M Y. Research progress on heat transfer enhancement technology of phase change energy storage[J]. Energy Storage Science and Technology, 2019, 8(6): 1107-1115. | |
4 | 曲世琳, 彭莉, 吴晓琼, 等. 太阳能热利用中相变蓄热装置优化设计研究[J]. 太阳能学报, 2015, 36(7): 1705-1709. |
QU S L, PENG L, WU X Q, et al. Design of phase change thermal storage device in the thermal utilization of solar energy[J]. Acta Energiae Solaris Sinica, 2015, 36(7): 1705-1709. | |
5 | 高一倩, 柳毅, 李凌. 基于LBM的三角腔固液相变模拟[J]. 储能科学与技术, 2020, 9(6): 1798-1805. |
GAO Y Q, LIU Y, LI L. Numerical simulation of natural convection melting inside a triangular cavity using Lattice Boltzmann method[J]. Energy Storage Science and Technology, 2020, 9(6): 1798-1805. | |
6 | LIN Y X, ALVA G, FANG G Y. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials[J]. Energy, 2018, 165: 685-708. |
7 | 杜昭, 阳康, 舒高, 等. 金属泡沫内石蜡固液相变蓄热/放热实验[J]. 储能科学与技术, 2022, 11(2): 531-537. |
DU Z, YANG K, SHU G, et al. Experimental study on the heat storage and release of the solid-liquid phase change in metal-foam-filled tube[J]. Energy Storage Science and Technology, 2022, 11(2): 531-537. | |
8 | 夏莉, 张鹏, 周圆, 等. 石蜡与石蜡/膨胀石墨复合材料充/放热性能研究[J]. 太阳能学报, 2010, 31(5): 610-614. |
XIA L, ZHANG P, ZHOU Y, et al. Study on the charging/discharging characteristics of paraffin and paraffin/expanded graphite composite material[J]. Acta Energiae Solaris Sinica, 2010, 31(5): 610-614. | |
9 | ERMIS K, EREK A, DINCER I. Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network[J]. International Journal of Heat and Mass Transfer, 2007, 50(15/16): 3163-3175. |
10 | ETTOUNEY H, ALATIQI I, AL-SAHALI M, et al. Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads[J]. Energy Conversion and Management, 2006, 47(2): 211-228. |
11 | 程文龙, 韦文静. 高孔隙率泡沫金属相变材料储能、传热特性[J]. 太阳能学报, 2007, 28(7): 739-744. |
CHENG W L, WEI W J. Theoretical analysis of phase change material storage with high porosity metal foams[J]. Acta Energiae Solaris Sinica, 2007, 28(7): 739-744. | |
12 | FERNANDES D, PITIÉ F, CÁCERES G, et al. Thermal energy storage:"How previous findings determine current research priorities"[J]. Energy, 2012, 39(1): 246-257. |
13 | CALIANO M, BIANCO N, GRADITI G, et al. Analysis of a phase change material-based unit and of an aluminum foam/phase change material composite-based unit for cold thermal energy storage by numerical simulation[J]. Applied Energy, 2019, 256: doi: 10.1016/j.apenergy.2019.113921. |
14 | 陈华, 赵睿, 柳秀丽. 泡沫铜对相变蓄热性能的影响[J]. 制冷技术, 2022, 42(1): 34-38, 58. |
CHEN H, ZHAO R, LIU X L. Effect of copper foam on phase change heat storage performance[J]. Chinese Journal of Refrigeration Technology, 2022, 42(1): 34-38, 58. | |
15 | 王凡,杜昭,阳康,等.泡沫金属内嵌石蜡水平蓄器内凝固放热的实验研究[J].储能科学与技术, 2022: doi: 10.19799/j.cnki.2095-4239. 2022.0291. |
WANG F, DU Z, YANG K, et al. Experimental study on solidification and heat release of foam metal embedded paraffin horizontal accumulator[J]. Energy Storage Science and Technology, 2022: doi: 10.19799/j.cnki.2095-4239.2022.0291. | |
16 | YAO Y P, WU H Y, LIU Z Y. Direct simulation of interstitial heat transfer coefficient between paraffin and high porosity open-cell metal foam[J]. Journal of Heat Transfer, 2018, 140(3): doi: 10.1115/1.4038006. |
17 | LI W Q, WAN H, JING T T, et al. Microencapsulated phase change material (MEPCM) saturated in metal foam as an efficient hybrid PCM for passive thermal management: A numerical and experimental study[J]. Applied Thermal Engineering, 2019, 146: 413-421. |
18 | SENTHIL R, PUNNIAKODI B M S, BALASUBRAMANIAN D, et al. Numerical investigation on melting and energy storage density enhancement of phase change material in a horizontal cylindrical container[J]. International Journal of Energy Research, 2022, 46(13): 19138-19158. |
19 | TABASSUM T, HASAN M, BEGUM L. Dynamic heat transfer study of a triangular-shaped latent heat storage unit for the attic space of a domestic dwelling[J]. Journal of Thermal Science and Engineering Applications, 2018, 10(6): doi: 10.1115/1.4040645. |
20 | EISAPOUR A H, EISAPOUR M, MOHAMMED H I, et al. Optimum design of a double elliptical latent heat energy storage system during the melting process[J]. Journal of Energy Storage, 2021, 44: doi: 10.1016/j.est.2021.103384. |
21 | CALMIDI V V, MAHAJAN R L. Forced convection in high porosity metal foams[J]. Journal of Heat Transfer, 2000, 122(3): 557-565. |
22 | KOUSHA N, HOSSEINI M J, ALIGOODARZ M R, et al. Effect of inclination angle on the performance of a shell and tube heat storage unit-An experimental study[J]. Applied Thermal Engineering, 2017, 112: 1497-1509. |
23 | LIU C, GROULX D. Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system[J]. International Journal of Thermal Sciences, 2014, 82: 100-110. |
24 | YE W B, ZHU D S, WANG N. Numerical simulation on phase-change thermal storage/release in a plate-fin unit[J]. Applied Thermal Engineering, 2011, 31(17/18): 3871-3884. |
25 | YUAN Y P, CAO X L, XIANG B, et al. Effect of installation angle of fins on melting characteristics of annular unit for latent heat thermal energy storage[J]. Solar Energy, 2016, 136: 365-378. |
26 | ZHANG P, MENG Z N, ZHU H, et al. Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam[J]. Applied Energy, 2017, 185: 1971-1983. |
[1] | Ao TANG, Chuanwei YAN. Modelling and simulation of flow batteries: Recent progress and prospects [J]. Energy Storage Science and Technology, 2022, 11(9): 2866-2878. |
[2] | Guohui FENG, Tianyu WANG, Gang WANG. A simulation analysis on the effect of encapsulation mode on the heat storage and release performance of phase change water tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2161-2176. |
[3] | Wenlan YE, Ming ZHAO, Mingyu HU, Yang TIAN. Analysis of heat storage and release performance of tube bundle phase change heat accumulator [J]. Energy Storage Science and Technology, 2022, 11(7): 2151-2160. |
[4] | Zhongbo LI, Jingxiao HAN, Chengcheng WANG, Hui YANG, Na YANG, Shaowu YIN, Li WANG, Lige TONG, Zhiwei TANG, Yulong DING. Simulation and the parameter influence relationship of the discharging process in a thermochemical reactor [J]. Energy Storage Science and Technology, 2022, 11(7): 2133-2140. |
[5] | JIANG Chengyi, ZHONG Zunrui, WU Zide, PENG Hao. Thermodynamic properties of C8H18-C11H24 mixed alkane system phase change materials [J]. Energy Storage Science and Technology, 2022, 11(6): 1957-1967. |
[6] | WU Xiaoling, ZHOU Tao, LIU Yuzhao, DU Yanping, CHEN Huiping, LI Shun. Numerical study on cooling enhancement of micro devices by designing turbulence based hollow micro pin-fin arrays with lateral holes [J]. Energy Storage Science and Technology, 2022, 11(6): 1980-1987. |
[7] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[8] | Yuying LI, Wenzhen WEI, Qi LI, Yuting WU. Preparation and investigation of quaternary nitrates/halloysites/graphite shape-stable composite phase change material with low melting temperature for thermal energy storage [J]. Energy Storage Science and Technology, 2022, 11(3): 1044-1051. |
[9] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[10] | Zhao DU, Kang YANG, Gao SHU, Pan WEI, Xiaohu YANG. Experimental Study on the Heat Storage and Release of the Solid-Liquid Phase Change in Metal-Foam-Filled Tube [J]. Energy Storage Science and Technology, 2022, 11(2): 531-537. |
[11] | Ang LI, Xiaomeng LI, Lin YANG, Han WANG, Junfan XIANG, Yuhan LIU. Compression force calculation of redox flow battery [J]. Energy Storage Science and Technology, 2022, 11(2): 609-614. |
[12] | Yongliang SHEN, Pengwei ZHANG, Shuli LIU. Three-dimensional numerical study of discharging characteristics of a fin-enhanced cascaded latent heat storage system [J]. Energy Storage Science and Technology, 2022, 11(11): 3558-3565. |
[13] | Li SHENG, Xinjie XUE, Yanjun BO, Changying ZHAO. Simulation and analysis of pumped thermal electricity storage system based on phase change energy storage medium [J]. Energy Storage Science and Technology, 2022, 11(11): 3649-3657. |
[14] | Fan WANG, Zhao DU, Kang YANG, Xinyi WANG, Rukun HU, Xiaohu YANG. Experimental study on solidification of metal foam composite phase change material in a horizontal heat storage tube [J]. Energy Storage Science and Technology, 2022, 11(11): 3667-3673. |
[15] | Jun ZHANG, Fengxia ZHAO, Zhao DU, Kang YANG, Yuanji LI, Xiaohu YANG. Influence of tank shape on heat storage performance: A numerical study [J]. Energy Storage Science and Technology, 2022, 11(11): 3674-3680. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||