Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (11): 3435-3444.doi: 10.19799/j.cnki.2095-4239.2023.0361
• Energy Storage System and Engineering • Previous Articles Next Articles
Kaixuan WANG1,2(), Zhitao ZUO1,2,3, Qi LIANG1, Wenbin GUO1, Haisheng CHEN1,2,3()
Received:
2023-05-25
Revised:
2023-08-15
Online:
2023-11-05
Published:
2023-11-16
Contact:
Haisheng CHEN
E-mail:wangkaixuan@iet.cn;chen_hs@iet.cn
CLC Number:
Kaixuan WANG, Zhitao ZUO, Qi LIANG, Wenbin GUO, Haisheng CHEN. Performance prediction methods for centrifugal compressors: A review[J]. Energy Storage Science and Technology, 2023, 12(11): 3435-3444.
1 | 余耀, 孙华, 许俊斌, 等. 压缩空气储能技术综述[J]. 装备机械, 2013(1): 68-74. |
YU Y, SUN H, XU J B, et al. Overview of compressed air energy storage technology[J]. The Magazine on Equipment Machinery, 2013(1): 68-74. | |
2 | COPPAGE J, DALLENBACH F. Study of supersonic radial compressors for refrigeration and pressurization systems[R], 1956. |
3 | GALVAS M R. Computer program for predicting off-design performance of centrifugal compressors[R], 1973. |
4 | PATRIK K, ADAM T, PAVEL M, et al. Searching for the most suitable loss model set for subsonic centrifugal compressors using an improved method for off-design performance prediction[J]. Energies, 2021, 14(24): 8545. |
5 | 秦立森, 赵晓路. 多级离心压气机变工况性能预估及S2流面矩阵解[J]. 工程热物理学报, 1996, 17(S1): 52-55. |
QIN L S, ZHAO X L. Performance prediction of multi-stage centrifugal compressor at design and off-design conditions and solution of the flow on S2 stream surace by matrix method[J]. Journal of Engineering Thermophysics, 1996, 17(S1): 52-55. | |
6 | PEI J Z, ZHAO Y Y, ZHAO M R, et al. Effects of inlet working condition and heat load on supercritical CO2 compressor performance[J]. Nuclear Engineering and Technology, 2023, 55(8): 2812-2822. |
7 | 詹涛, 张春路, 王昔林, 等. 基于RBF网络的制冷压缩机热力性能计算[J]. 上海交通大学学报, 2001, 35(8): 1172-1174. |
ZHAN T, ZHANG C L, WANG X L, et al. Thermodynamic performance simulation of refrigeration compressors based on RBF networks[J]. Journal of Shanghai Jiao Tong University, 2001, 35(8): 1172-1174. | |
8 | 叶俊锋. 基于数据与模型迁移的离心压缩机快速建模方法研究[D]. 徐州: 中国矿业大学, 2016. |
YE J F. Research on centrifugal compressor rapid modeling method based on data and model migration[D]. Xuzhou: China University of Mining and Technology, 2016. | |
9 | CHU F, WANG F L, WANG X G, et al. A model for parameter estimation of multistage centrifugal compressor and compressor performance analysis using genetic algorithm[J]. Science China Technological Sciences, 2012, 55(11): 3163-3175. |
10 | 代邦武. 基于多模型迁移策略的离心压缩机建模方法研究[D]. 徐州: 中国矿业大学, 2019. |
DAI B W. Research on modeling method of centrifugal compressor based on multi-model migration strategy[D]. Xuzhou: China University of Mining and Technology, 2019. | |
11 | 滕庚, 沈昕, 欧阳华, 等. 超临界二氧化碳离心压缩机性能预测模型研究[J]. 热力发电, 2020, 49(10): 173-179. |
TENG G, SHEN X, OUYANG H, et al. Research on performance prediction model of supercritical carbon dioxide centrifugal compressor[J]. Thermal Power Generation, 2020, 49(10): 173-179. | |
12 | 张波, 赛庆毅, 李斌. 基于蜗壳损失模型的离心压缩机性能预测研究[J]. 重庆工商大学学报(自然科学版), 2022, 39(1): 9-18. |
ZHANG B, SAI Q Y, LI B. Research on performance prediction of centrifugal compressor based on volute loss model[J]. Journal of Chongqing Technology and Business University (Natural Science Edition), 2022, 39(1): 9-18. | |
13 | GALVAS M R. Analytical correlation of centrifugal compressor design geometry for maximum efficiency with specific speed[R], 1972. |
14 | 李文华, 钟瑞兴. 离心压缩机性能预测方法探讨[J]. 压缩机技术, 2007(5): 7-9. |
LI W H, ZHONG R X. Investigation of way to performance forecast for centrifugal compressor[J]. Compressor Technology, 2007(5): 7-9. | |
15 | 吴宝海, 席光, 王尚锦, 等. 离心式压缩机性能预测模型研究[J]. 风机技术, 1999, 41(3): 5-8, 40. |
WU B H, XI G, WANG S J, et al. Research on performance predictive model for centrifugal compressor[J]. Compressor Blower & Fan Technology, 1999, 41(3): 5-8, 40. | |
16 | AUNGIER R H. Centrifugal compressors: A strategy for aerodynamic design and analysis[M]. New York: ASME Press, 2000. |
17 | OH H, YOON E, CHUNG M. An optimum set of loss models for performance prediction of centrifugal compressors[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 1997. |
18 | ZHANG C W, DONG X Z, LIU X Y, et al. A method to select loss correlations for centrifugal compressor performance prediction[J]. Aerospace Science and Technology, 2019, 93: 105335. |
19 | 闫雪, 左志涛, 梁奇, 等. 带可调导叶离心压缩机变工况性能预测模型研究[J]. 中国电机工程学报, 2016, 36(12): 3381-3390. |
YAN X, ZUO Z T, LIANG Q, et al. Research of off-design performance prediction model of centrifugal compressor with adjustable guide vane[J]. Proceedings of the CSEE, 2016, 36(12): 3381-3390. | |
20 | 闫雪. 导叶调节对双级离心压缩机性能影响的研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2016. |
YAN X. Investigation on influence of adiustable inlet guide vane on performance of two-stage centrifugal compressor[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2016. | |
21 | SHAO W Y, DU J, YANG J G, et al. Investigation on one-dimensional loss models for predicting performance of multistage centrifugal compressors in supercritical CO2 Brayton cycle[J]. Journal of Thermal Science, 2021, 30(1): 133-148. |
22 | CHANG Z Y, ZHAO Y, ZHAO Y Y, et al. Off-design performance and control strategies of sCO2 recompression power systems considering compressor operating safety[J]. Applied Thermal Engineering, 2023, 232: 121044. |
23 | 阎超, 于剑, 徐晶磊, 等. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011, 41(5): 562-589. |
YAN C, YU J, XU J L, et al. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics, 2011, 41(5): 562-589. | |
24 | 孟冲, 左志涛, 郭文宾, 等. 压缩空气储能系统高压离心压缩机进口导叶调节规律研究[J]. 工程热物理学报, 2021, 42(11): 2834-2840. |
MENG C, ZUO Z T, GUO W B, et al. Research on regulation law of inlet guide vane in high-pressure centrifugal compressor of CAES[J]. Journal of Engineering Thermophysics, 2021, 42(11): 2834-2840. | |
25 | 陈宗华, 谷传纲, 舒信伟. 采用混合工质的两级离心压缩机性能数值分析[J]. 流体机械, 2011, 39(3): 23-27. |
CHEN Z H, GU C G, SHU X W. Numerical investigation of the performance of two-stage centrifugal compressor with mixed gases[J]. Fluid Machinery, 2011, 39(3): 23-27. | |
26 | 王企鲲, 陈康民, 戴韧. 多级离心压缩机级间弯道与回流器内流动的数值研究[J]. 流体机械, 2005, 33(11): 8-12, 87. |
WANG Q K, CHEN K M, DAI R. Numerical investigation for aerodynamic performance of the crossover and deswirl cascade inside a multistage centrifugal compressor[J]. Fluid Machinery, 2005, 33(11): 8-12, 87. | |
27 | 张国路迢, 王江峰, 娄聚伟, 等. 半高叶片扩压器对离心压缩机流动性能影响的数值研究[J/OL]. 西安交通大学学报: 1-9[2023-08-28]. http://kns.cnki.net/kcms/detail/61.1069.T.20230524.1650.006.html. |
28 | 孙恩慧, 杨振宇, 廖凯龙, 等. 超临界二氧化碳离心压缩机设计及性能预测[J]. 热力发电, 2023, 52(6): 127-134, 156. |
SUN E H, YANG Z Y, LIAO K L, et al. Design and performance prediction of supercritical carbon dioxide centrifugal compressor[J]. Thermal Power Generation, 2023, 52(6): 127-134, 156. | |
29 | 成沉, 刘军, 许昊. 多级离心压缩机性能预测软件设计[J]. 风机技术, 2020, 62(S1): 1-4. |
CHENG C, LIU J, XU H. Design of performance prediction software for multistage centrifugal compressor[J]. Chinese Journal of Turbomachinery, 2020, 62(S1): 1-4. | |
30 | 郝岩, 姜姝. 多段压缩机整机性能曲线计算软件的开发[J]. 风机技术, 2014, 56(2): 36-40. |
HAO Y, JIANG S. Development of calculation software for multi-segment compressor performance curve[J]. Compressor, Blower & Fan Technology, 2014, 56(2): 36-40. | |
31 | 李晓平, 卓铭浩, 吕勃蓬, 等. 离心压缩机性能换算软件的开发与应用[J]. 油气储运, 2013, 32(8): 824-828. |
LI X P, ZHUO M H, LYU B P, et al. Development and application of performance conversion software for centrifugal compressor[J]. Oil & Gas Storage and Transportation, 2013, 32(8): 824-828. | |
32 | 谢英, 麻秀芬, 谢婷, 等. 基于相似原理的长输管道压缩机能耗分析[J]. 油气储运, 2018, 37(4): 421-427. |
XIE Y, MA X F, XIE T, et al. Analysis on energy consumption of compressor in long-distance pipeline based on similitude principle[J]. Oil & Gas Storage and Transportation, 2018, 37(4): 421-427. | |
33 | 朱昌允, 秦国良, 吴让利. 基于试验的离心压缩机两种相似换算的比较[J]. 风机技术, 2011, 53(1): 24-27. |
ZHU C Y, QIN G L, WU R L. Comparison of the two similar conversion of centrifugal compressor based on test[J]. Compressor, Blower & Fan Technology, 2011, 53(1): 24-27. | |
34 | WU S M, RÍOS-MERCADO R Z, BOYD E A, et al. Model relaxations for the fuel cost minimization of steady-state gas pipeline networks[J]. Mathematical and Computer Modelling, 2000, 31(2/3): 197-220. |
35 | 熊浩云, 吴长春, 玉德俊. 适用于输气管道运行方案优化的压缩机功率拟合函数[J]. 油气储运, 2017, 36(6): 734-738. |
XIONG H Y, WU C C, YU D J. The fitting function of compress power suitable for optimization of gas pipeline operation scheme[J]. Oil & Gas Storage and Transportation, 2017, 36(6): 734-738. | |
36 | 张轩, 姜进田, 王华青, 等. 基于回归分析法的离心式压缩机性能模型[J]. 油气储运, 2018, 37(2): 197-203. |
ZHANG X, JIANG J T, WANG H Q, et al. A centrifugal compressor performance model based on regression analysis method[J]. Oil & Gas Storage and Transportation, 2018, 37(2): 197-203. | |
37 | 王伟, 姚杨, 马最良. 基于BP神经网络的压缩机性能预测模型的建立[J]. 流体机械, 2005, 33(9): 21-24. |
WANG W, YAO Y, MA Z L. Model of compressor performance prediction based on error back-propagation artificial neural network[J]. Fluid Machinery, 2005, 33(9): 21-24. | |
38 | 王丽春, 樊会元. 离心压缩机性能预测的神经网络方法[J]. 华东冶金学院学报, 2000, 17(2): 142-145. |
WANG L C, FAN H Y. Neural network approach for predictions of centrifugal compressors[J]. Journal of East China University of Metallargy, 2000, 17(2): 142-145. | |
39 | 谢慕君, 孟祥光. 基于MATLAB的RBF神经网络在离心压缩机性能预测中的应用[J]. 石油化工自动化, 2008, 44(5): 46-48, 52. |
XIE M J, MENG X G. The application of RBF neural network based on MATLAB for the performance prediction of centrifugal compressors[J]. Automation in Petro-Chemical Industry, 2008, 44(5): 46-48, 52. | |
40 | 朱明星, 张德龙. RBF网络基函数中心选取算法的研究[J]. 安徽大学学报(自然科学版), 2000, 24(1): 72-78. |
ZHU M X, ZHANG D L. Study on the algorithms of selecting the radial basis function center[J]. Journal of Anhui University (Natural Sciences), 2000, 24(1): 72-78. | |
41 | 黄胜忠. 基于RBF神经网络的离心压缩机的性能预测研究[J]. 煤矿机械, 2011, 32(1): 64-66. |
HUANG S Z. Study of predication on performance of centrifugal compressor based on RBF neutral network[J]. Coal Mine Machinery, 2011, 32(1): 64-66. | |
42 | HUANG S Z. Research and application of wavelet neural networks of particle swarm optimization algorithm in the performance prediction of centrifugal compressor[J]. Advanced Materials Research, 2011, 187: 271-276. |
43 | 武树宝, 黄港港. 基于PSO-SVM模型的离心式压缩机性能分析及预测[J]. 山东化工, 2021, 50(5): 179-181. |
WU S B, HUANG G G. Performance analysis and prediction of centrifugal compressor based on PSO-SVM model[J]. Shandong Chemical Industry, 2021, 50(5): 179-181. | |
44 | 张平, 李亚民, 王冠霖, 等. 基于IPSO-LSSVM的离心式压缩机性能预测方法[J]. 油气储运, 2023, 42(1): 79-86. |
ZHANG P, LI Y M, WANG G L, et al. Performance prediction method of centrifugal compressor based on IPSO-LSSVM[J]. Oil & Gas Storage and Transportation, 2023, 42(1): 79-86. | |
45 | LU J D, GAO F R. Model migration with inclusive similarity for development of a new process model[J]. Industrial & Engineering Chemistry Research, 2008, 47(23): 9508-9516. |
[1] | Wenhui LI, Yonghan JIAO, Ge GUO, Jiajun LI, Jianqiang DENG. Research on improving cooling performance of compressed air energy storage system [J]. Energy Storage Science and Technology, 2023, 12(9): 2833-2841. |
[2] | Yonghong XU, Yuting WU, Hongguang ZHANG, Fubin YANG, Yan WANG. Experimental study on a micro-compressed air energy storage system based on a pneumatic motor [J]. Energy Storage Science and Technology, 2023, 12(6): 1854-1861. |
[3] | Xiaoxia SUN, Zhonghua GUI, Ziyu GAO, Bingqian ZHOU, Xia LIU, Xinjing ZHANG, Huan GUO, Wen LI, Yong SHENG, Yangli ZHU, Jian ZHOU, Yujie XU. Dynamic characteristics of compressed air energy storage system [J]. Energy Storage Science and Technology, 2023, 12(6): 1840-1853. |
[4] | Weiling ZHANG, Han GU, Chao ZHANG, Ang GE, Yuanxu YING. Technical economic characteristics and development trends of compressed air energy storage [J]. Energy Storage Science and Technology, 2023, 12(4): 1295-1301. |
[5] | Qihui YU, Zhigang WEI, Guoxin SUN, Liang LU. Experimental and performance study of spray heat transfer-based compressed air quasi-isothermal expansion system [J]. Energy Storage Science and Technology, 2023, 12(3): 878-888. |
[6] | WU Yuting, KOU Zhenfeng, ZHANG Cancan, WU Yiyang. Analysis of the dynamic distribution parameters of a solid sodium chloride column heat exchanger [J]. Energy Storage Science and Technology, 2022, 11(6): 1988-1995. |
[7] | Di LIU, Tiantian ZHANG, Yuwei PENG, Xiaomei TANG, Dan WANG, Chengxiong MAO. Shaft modeling and oscillation analysis for expansion process of compressed air energy storage system [J]. Energy Storage Science and Technology, 2022, 11(2): 563-572. |
[8] | Qi XIA, Yang HE, Yujie XU, Haisheng CHEN, Jianqiang DENG. Matching performance between the trigeneration of an adiabatic compressed air energy storage system and load [J]. Energy Storage Science and Technology, 2021, 10(5): 1494-1502. |
[9] | Dingzhang GUO, Zhao YIN, Xuezhi ZHOU, Yujie XU, Yong SHENG, Wenhui SUO, Haisheng CHEN. Status and prospect of gas storage device in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1486-1493. |
[10] | Shenghui ZHOU, Yang HE, Haisheng CHEN, Yujie XU, Jianqiang DENG. Using an ejector to intensify the charging process of a compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1503-1513. |
[11] | Yang LI, Xinjing ZHANG, Jianfei SONG, Xiaoyu LI, Huan GUO, Yujie XU, Haisheng CHEN. Dynamic regulation and control of the discharge process in compressed air energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1514-1523. |
[12] | Xing WANG, Wen LI, Yangli ZHU, Zhitao ZUO, Haisheng CHEN. Optimal design and flow loss reduction mechanism of bowed guide vane in a CAES axial flow turbine [J]. Energy Storage Science and Technology, 2021, 10(5): 1524-1535. |
[13] | Ran XU, Zhitao ZUO, Ao LI, Xia WANG, Ming CHEN, Haisheng CHEN. Water evolution characteristics of piston compressors under varying operating conditions based on the moisture separation coefficient [J]. Energy Storage Science and Technology, 2021, 10(5): 1556-1564. |
[14] | Shan HU, Chang LIU, Yujie XU, Haisheng CHEN, Huan GUO. Thermo-economic analysis of compressed air energy storage under peak load shaving condition [J]. Energy Storage Science and Technology, 2021, 10(5): 1607-1613. |
[15] | Qihui YU, Li TIAN, Xiaofei LI, Xiaodong LI, Xin TAN, Yeming ZHANG. Compressed air energy storage capacity configuration and economic evaluation considering the uncertainty of wind energy [J]. Energy Storage Science and Technology, 2021, 10(5): 1614-1623. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||