Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (2): 390-395.doi: 10.19799/j.cnki.2095-4239.2023.0560
• Energy Storage Materials and Devices • Previous Articles Next Articles
Jing BAI(), Huifang FAN, Siqi CUI, Chuang XU, Yi ZHANG, Size GUAN, Hanfei YANG, Yifei JIA, Shuwei GENG, Huifan ZHENG
Received:
2023-08-21
Revised:
2023-09-06
Online:
2024-02-28
Published:
2024-03-01
Contact:
Jing BAI
E-mail:baijing13703842765@163.com;baijing
CLC Number:
Jing BAI, Huifang FAN, Siqi CUI, Chuang XU, Yi ZHANG, Size GUAN, Hanfei YANG, Yifei JIA, Shuwei GENG, Huifan ZHENG. Experimental study on heat dissipation performance of automotive fuel cells[J]. Energy Storage Science and Technology, 2024, 13(2): 390-395.
Table 1
Main equipment and related parameters of the system"
设备名称 | 型号 | 参数 |
---|---|---|
水泵 | NP190 | 名义流量:1.9 mL/rev;额定流量:5.4 L/min;转速调节范围:500~3600 r/min;额定电压:DC24 V |
加热端 | 自制 | 由冷板-加热板-冷板组成,加热板采用硅橡胶加热板,尺寸为320 mm×160 mm×3 mm,连接温控器进行温度控制;冷板采用铝制结构,尺寸为320 mm×160 mm×18 mm,内部管道宽度为40 mm;保温层采用聚苯乙烯泡沫塑料,厚度为15 mm |
换热器 | 平行流换热器 | 采用全铝材料制造,主要是由集流管、翅片、扁管以及百叶窗构成。在集流管中采用隔断,形成4种不同流程布置(1流程、2流程布置为22-12,3流程布置为16-12-6,4流程布置为12-10-8-4) |
风机 | WSLNF-261WX-5-10 | 额定转速:(3150±50) r/min;最大风量:2500 m³/h;电机功率:300 W,按PWM调速器百分比控制风机大小 |
1 | 彭苏萍. 中国氢能源与燃料电池发展战略及未来展望[J]. 中国工业和信息化, 2023(4): 36-41. |
PENG S P. Development strategy and future prospect of hydrogen energy and fuel cell in China[J]. China Industry & Information Technology, 2023(4): 36-41. | |
2 | NOLAN J, KOLODZIEJ J. Modeling of an automotive fuel cell thermal system[J]. Journal of Power Sources, 2010, 195(15): 4743-4752. |
3 | 刘应都, 郭红霞, 欧阳晓平. 氢燃料电池技术发展现状及未来展望[J]. 中国工程科学, 2021, 23(4): 162-171. |
LIU Y D, GUO H X, OUYANG X P. Development status and future prospects of hydrogen fuel cell technology[J]. Strategic Study of CAE, 2021, 23(4): 162-171. | |
4 | 童正明, 黄浩明, 李立楠, 等. 燃料电池发动机电堆散热的控制[J]. 化工进展, 2015, 34(8): 3009-3014. |
TONG Z M, HUANG H M, LI L N, et al. Thermal control of fuel cell engine stack[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3009-3014. | |
5 | 刘波, 赵锋, 李骁. 质子交换膜燃料电池热管理技术的进展[J]. 电池, 2018, 48(3): 202-205. |
LIU B, ZHAO F, LI X. Review on thermal management technology of PEMFC[J]. Battery Bimonthly, 2018, 48(3): 202-205. | |
6 | CHEN K, WU W X, YUAN F, et al. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern[J]. Energy, 2019, 167: 781-790. |
7 | 彭明, 夏强峰, 蒋理想, 等. 流道布置对风冷燃料电池性能影响的研究[J]. 化工学报, 2022, 73(10): 4625-4637. |
PENG M, XIA Q F, JIANG L X, et al. Study on the effect of gas channel arrangement on the performance of air-cooled fuel cells[J]. CIESC Journal, 2022, 73(10): 4625-4637. | |
8 | LEE J, GUNDU M H, LEE N, et al. Innovative cathode flow-field design for passive air-cooled polymer electrolyte membrane (PEM) fuel cell stacks[J]. International Journal of Hydrogen Energy, 2020, 45(20): 11704-11713. |
9 | 翟俊香, 何广利, 许壮, 等. 空冷型质子交换膜燃料电池系统效率的实验研究[J]. 储能科学与技术, 2020, 9(6): 1885-1889. |
ZHAI J X, HE G L, XU Z, et al. Experimental study on system efficiency of air-cooled proton exchange membrane fuel cell[J]. Energy Storage Science and Technology, 2020, 9(6): 1885-1889. | |
10 | RAHGOSHAY S M, RANJBAR A A, RAMIAR A, et al. Thermal investigation of a PEM fuel cell with cooling flow field[J]. Energy, 2017, 134: 61-73. |
11 | CASTELAIN C, LASBET Y, AUVITY B, et al. Experimental study of the thermal performance of chaotic geometries for their use in PEM fuel cells[J]. International Journal of Thermal Sciences, 2016, 101: 181-192. |
12 | ZOU W J, KIM Y B. Temperature control for a 5 kW water-cooled PEM fuel cell system for a household application[J]. IEEE Access, 2019, 7: 144826-144835. |
13 | 王星, 孙俊, 陈宁芳, 等. 基于Simscape的质子交换膜燃料电池冷却系统建模与温度控制策略[J]. 储能科学与技术, 2023, 12(3): 857-869. |
WANG X, SUN J, CHEN N F, et al. Modeling of a proton exchange membrane fuel cell cooling system based on the Simscape temperature control strategy[J]. Energy Storage Science and Technology, 2023, 12(3): 857-869. | |
14 | 郭爱, 陈维荣, 刘志祥, 等. 车用燃料电池热管理系统模型研究[J]. 电源技术, 2014, 38(12): 2278-2282. |
GUO A, CHEN W R, LIU Z X, et al. Modeling of PEMFC thermal management system for vehicle application[J]. Chinese Journal of Power Sources, 2014, 38(12): 2278-2282. | |
15 | YAN X H, PENG Y M, SHEN Y T, et al. The use of phase-change cooling strategy in proton exchange membrane fuel cells: A numerical study[J]. Science China Technological Sciences, 2021, 64(12): 2762-2770. |
16 | CHOI E J, PARK J Y, KIM M S. Two-phase cooling using HFE-7100 for polymer electrolyte membrane fuel cell application[J]. Applied Thermal Engineering, 2019, 148: 868-877. |
17 | ORO M V, BAZZO E. Flat heat pipes for potential application in fuel cell cooling[J]. Applied Thermal Engineering, 2015, 90: 848-857. |
18 | FLY A, THRING R H. Temperature regulation in an evaporatively cooled proton exchange membrane fuel cell stack[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11976-11982. |
19 | GARRITY P T, KLAUSNER J F, MEI R W. A flow boiling microchannel evaporator plate for fuel cell thermal management[J]. Heat Transfer Engineering, 2007, 28(10): 877-884. |
20 | 秦彦周, 曹世博, 刘国坤, 等. 质子交换膜燃料电池堆冷却系统研究进展[J]. 汽车技术, 2021(11): 1-14. |
QIN Y Z, CAO S B, LIU G K, et al. Research progress on cooling system for proton exchange membrane fuel cell stack[J]. Automobile Technology, 2021(11): 1-14. | |
21 | 陶文铨. 传热学[M]. 第5版. 北京: 高等教育出版社, 2019. |
TAO W Q. Heat transfer[M]. 5th ed. Beijing: Higher Education Press, 2019. | |
22 | 史美中, 王中铮. 热交换器原理与设计[M]. 第6版. 南京: 东南大学出版社, 2018. |
SHI M Z, WANG Z Z. Principle and design of heat exchangers[M]. 6th ed. Nanjing: Southeast University Press, 2018. |
[1] | Xiaoyun SUN, Deren WANG, Lin MENG, Zhongshan REN, Sensen LI. Design and optimization of cell structure and negative electrode materials for high areal capacity zinc-bromine flow batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 370-380. |
[2] | Yongshuai YU, Yongfeng LIU, Pucheng PEI, Lu ZHANG, Shengzhuo YAO. Effect of cathode relative humidity on membrane water content and performance of PEMFC [J]. Energy Storage Science and Technology, 2023, 12(6): 1755-1764. |
[3] | Xing WANG, Jun SUN, Ningfang CHEN, Li YAN. Modeling of a proton exchange membrane fuel cell cooling system based on the Simscape temperature control strategy [J]. Energy Storage Science and Technology, 2023, 12(3): 857-869. |
[4] | Jie JU, Ruifang CHEN, Gang WEI. Application of new phase change energy storage materials in building engineering [J]. Energy Storage Science and Technology, 2023, 12(12): 3883-3885. |
[5] | Keke LIU, Yongfeng LIU, Pucheng PEI, Shengzhuo YAO, Lu ZHANG. Design of a novel flow channel structure of PEMFC based on Koch snowflake [J]. Energy Storage Science and Technology, 2023, 12(11): 3361-3368. |
[6] | WANG Peican, WAN Lei, XU Ziang, XU Qin, PANG Maobin, CHEN Jinxun, WANG Baoguo. Interface engineering of self-supported electrode for electrochemical water splitting [J]. Energy Storage Science and Technology, 2022, 11(6): 1934-1946. |
[7] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[8] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[9] | Xing JU, Chao XU, Guoqing SHEN, Xiaoze DU, Wanli XIAO, Yongping YANG. Discussion on the “Emerging Engineering Education” cultivation model for undergraduate major of Energy Storage Science and Engineering [J]. Energy Storage Science and Technology, 2022, 11(12): 4084-4091. |
[10] | Zhihao LI, Hao PENG, Yaqin CHEN. Neural network prediction model for temperature distribution of proton exchange membrane fuel cell membrane electrode assembly [J]. Energy Storage Science and Technology, 2021, 10(6): 2053-2059. |
[11] | Jing ZHANG, Yan LU, Sheng LI, Guangcai XIE, Zhongmin WAN. Modeling and simulation of domestic fuel cell cogenerated heat and power system based on fuzzy PID control [J]. Energy Storage Science and Technology, 2021, 10(3): 1117-1126. |
[12] | Yingying HU, Xiangwei WU, Zhaoyin WEN. Progress and prospect of engineering research on energy storage sodium sulfur battery—Material and structure design for improving battery safety [J]. Energy Storage Science and Technology, 2021, 10(3): 781-799. |
[13] | Junxiang ZHAI, Guangli HE, Zhuang XU, Congmin LIU. Experimental study on system efficiency of air-cooled proton exchange membrane fuel cell [J]. Energy Storage Science and Technology, 2020, 9(6): 1885-1889. |
[14] | YANG Xulai, ZHANG Zheng, CAO Yong, LIU Chengshi, AI Xinping. The structural engineering for achieving high energy density Li-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(4): 1127-1136. |
[15] | TU Weichao, LI Wenyan, ZHANG Qiang, Jia'ao WANG. Engineering application of flywheel energy storage in power system [J]. Energy Storage Science and Technology, 2020, 9(3): 869-877. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||