Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (2): 370-380.doi: 10.19799/j.cnki.2095-4239.2023.0648
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xiaoyun SUN1(), Deren WANG1(), Lin MENG2, Zhongshan REN2, Sensen LI2
Received:
2023-09-19
Revised:
2023-10-11
Online:
2024-02-28
Published:
2024-03-01
Contact:
Deren WANG
E-mail:xiaoyunsun1999@163.com;dr_wang@ustb.edu.cn
CLC Number:
Xiaoyun SUN, Deren WANG, Lin MENG, Zhongshan REN, Sensen LI. Design and optimization of cell structure and negative electrode materials for high areal capacity zinc-bromine flow batteries[J]. Energy Storage Science and Technology, 2024, 13(2): 370-380.
Table 1
The atomic concentration of the GFs and content of functional groups in C1s and O1s spectra"
样品 | 原子浓度* | C1s (质量分数)/% | O1s (质量分数)/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | O | C=C | C-C | C-O | C=O | COOH | C=O | C-OH | C-O | 化学吸附率 | |
*C+O=100 % | |||||||||||
PGF | 95.61 | 4.39 | 59.66 | 22.93 | 6.94 | 2.68 | 3.40 | 0.22 | 1.90 | 1.88 | 0.39 |
TGF3 | 95.08 | 4.92 | 55.85 | 25.14 | 6.65 | 2.99 | 4.45 | 0.37 | 2.13 | 1.80 | 0.62 |
TGF5 | 93.18 | 6.82 | 53.34 | 25.48 | 6.42 | 3.67 | 4.27 | 0.72 | 2.86 | 2.51 | 0.73 |
TGF7 | 89.80 | 10.20 | 45.05 | 28.50 | 8.07 | 3.31 | 4.87 | 0.97 | 3.31 | 2.09 | 3.83 |
Fig. 5
(a) CV test results of the GFs at the scan rate of 20mV/s; (b) Comparison of the peak currents and relative ratio; (c) Comparison of the peak potential separation (ΔEp) and NOP of Zn2+; (d) Nyquist plots of different electrodes under a polarization potential of -0.8 V vs. SCE (Upper-left corner: Equivalent circuit)"
Table 2
Refining the parameters generated by the equivalent circuit model in Fig. 5"
样品 | Rs /Ω | Q1 (CPE) | Rct /Ω | Q2 (CPE) | ||
---|---|---|---|---|---|---|
Y0,1 | n1 | Y0,2 | n2 | |||
PGF | 49.30 | 1.308×10-4 | 0.6908 | 152.9 | 1.004×10-3 | 0.6727 |
TGF3 | 46.46 | 2.155×10-4 | 0.6056 | 78.81 | 5.602×10-3 | 0.6711 |
TGF5 | 52.30 | 4.125×10-4 | 0.5626 | 31.72 | 3.117×10-2 | 0.7926 |
TGF7 | 42.29 | 2.38×10-4 | 0.5780 | 61.82 | 3.194×10-3 | 0.7917 |
Fig. 6
(a) Voltage-capacity curves of the GFs, (b) Galvanostatic charge-discharge curves of the GFs at 30 mA/cm2 and 120 mAh/cm2, (c) Comparing CE and VE curves of the GFs at various current densities under constant areal capacity, (d) The comparative diagram of CE and EE for PGF and TGF5 at various areal capacity, (e) CE and (f) VE plots of the cells as a function of the cycle number at various areal capacities and current density"
1 | 陈海生, 李泓, 徐玉杰, 等. 2022年中国储能技术研究进展[J]. 储能科学与技术, 2023, 12(5): 1516-1552. |
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2022[J]. Energy Storage Science and Technology, 2023, 12(5): 1516-1552. | |
2 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
3 | 贾志军, 宋士强, 王保国. 液流电池储能技术研究现状与展望[J]. 储能科学与技术, 2012, 1(1): 50-57. |
JIA Z J, SONG S Q, WANG B G. Acritical review on redox flow batteries for electrical energy storage applications[J]. Energy Storage Science and Technology, 2012, 1(1): 50-57. | |
4 | 谢聪鑫, 郑琼, 李先锋, 等. 液流电池技术的最新进展[J]. 储能科学与技术, 2017, 6(5): 1050-1057. |
XIE C X, ZHENG Q, LI X F, et al. Current advances in the flow battery technology[J]. Energy Storage Science and Technology, 2017, 6(5): 1050-1057. | |
5 | 缪平, 姚祯, LEMMON John, 等. 电池储能技术研究进展及展望[J]. 储能科学与技术, 2020, 9(3): 670-678. |
MIAO P, YAO Z, JOHN L, et al. Current situations and prospects of energy storage batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 670-678. | |
6 | YIN Y B, LI X F. The flow battery for stationary large-scale energy storage[J]. Engineering, 2023, 21: 42-44. |
7 | 袁治章, 刘宗浩, 李先锋. 液流电池储能技术研究进展[J]. 储能科学与技术, 2022, 11(9): 2944-2958. |
YUAN Z Z, LIU Z H, LI X F. Research progress of flow battery technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2944-2958. | |
8 | TIAN Y D, CHEN S, HE Y L, et al. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries[J]. Nano Research Energy, 2022, 1: e9120025. |
9 | 孟琳. 锌溴液流电池储能技术研究和应用进展[J]. 储能科学与技术, 2013, 2(1): 35-41. |
MENG L. Recent progress in zinc-bromine flow battery energy storage technologies[J]. Energy Storage Science and Technology, 2013, 2(1): 35-41. | |
10 | LIN H, BAI L F, HAN X, et al. Pyrolytic carbon felt electrode Inhibits Formation of Zinc Dendrites in Zinc Bromine Flow Batteries[J]. International Journal of Electrochemical Science, 2018, 13(12): 12049-12061. |
11 | ZHENG X H, LIU Z C, SUN J F, et al. Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities[J]. Nature Communications, 2023, 14: 76. |
12 | XU Z C, FAN Q, LI Y, et al. Review of zinc dendrite formation in zinc bromine redox flow battery[J]. Renewable and Sustainable Energy Reviews, 2020, 127: 109838. |
13 | WANG K L, XIAO Y, PEI P C, et al. A phase-field model of dendrite growth of electrodeposited zinc[J]. Journal of the Electrochemical Society, 2019, 166(10): D389-D394. |
14 | XIE C L, ZHANG Q, YANG Z F, et al. Intrinsically zincophobic protective layer for dendrite-free zinc metal anode[J]. Chinese Chemical Letters, 2022, 33(5): 2653-2657. |
15 | ULAGANATHAN M, JAIN A, ARAVINDAN V, et al. Bio-mass derived mesoporous carbon as superior electrode in all vanadium redox flow battery with multicouple reactions[J]. Journal of Power Sources, 2015, 274: 846-850. |
16 | JIANG H R, WU M C, REN Y X, et al. Towards a uniform distribution of zinc in the negative electrode for zinc bromine flow batteries[J]. Applied Energy, 2018, 213: 366-374. |
17 | HOYT N C, HAWTHORNE K L, SAVINELL R F, et al. Plating utilization of carbon felt in a hybrid flow battery[J]. Journal of the Electrochemical Society, 2015, 163(1): A5041-A5048. |
18 | LU W J, XU P C, SHAO S Y, et al. Multifunctional carbon felt electrode with N-rich defects enables a long-cycle zinc-bromine flow battery with ultrahigh power density[J]. Advanced Functional Materials, 2021, 31(30): doi: 10.1002/adfm.202102913. |
19 | LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. |
20 | YIN Y B, WANG S N, ZHANG Q, et al. Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery[J]. Advanced Materials, 2020, 32(6): doi:10.1002/adma.201906803. |
21 | BAE S, LEE J, KIM D S. The effect of Cr3+-Functionalized additive in zinc-bromine flow battery[J]. Journal of Power Sources, 2019, 413: 167-173. |
22 | RAJARATHNAM G P, MONTOYA A, VASSALLO A M. The influence of a chloride-based supporting electrolyte on electrodeposited zinc in zinc/bromine flow batteries[J]. Electrochimica Acta, 2018, 292: 903-913. |
23 | XU Z C, WANG J, YAN S C, et al. Modeling of zinc bromine redox flow battery with application to channel design[J]. Journal of Power Sources, 2020, 450: 227436. |
24 | LU W J, LI T Y, YUAN C G, et al. Advanced porous composite membrane with ability to regulate zinc deposition enables dendrite-free and high-areal capacity zinc-based flow battery[J]. Energy Storage Materials, 2022, 47: 415-423. |
25 | HU J, YUE M, ZHANG H M, et al. A boron nitride nanosheets composite membrane for a long-life zinc-based flow battery[J]. Angewandte Chemie International Edition, 2020, 59(17): 6715-6719. |
26 | LI Q A, BAI A Y, ZHANG T Y, et al. Dopamine-derived nitrogen-doped carboxyl multiwalled carbon nanotube-modified graphite felt with improved electrochemical activity for vanadium redox flow batteries[J]. Royal Society Open Science, 2020, 7(7): 200402. |
27 | QU K G, ZHENG Y, DAI S, et al. Polydopamine-graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction[J]. Nanoscale, 2015, 7(29): 12598-12605. |
28 | WANG C H, LAI Q Z, FENG K, et al. From zeolite-type metal organic framework to porous nano-sheet carbon: High activity positive electrode material for bromine-based flow batteries[J]. Nano Energy, 2018, 44: 240-247. |
29 | WU M C, JIANG H R, ZHANG R H, et al. N-doped graphene nanoplatelets as a highly active catalyst for Br2/Br- redox reactions in zinc-bromine flow batteries[J]. Electrochimica Acta, 2019, 318: 69-75. |
30 | BINIAK S, SZYMAŃSKI G, SIEDLEWSKI J, et al. The characterization of activated carbons with oxygen and nitrogen surface groups[J]. Carbon, 1997, 35(12): 1799-1810. |
31 | RAJARATHNAM G P, EASTON M E, SCHNEIDER M, et al. The influence of ionic liquid additives on zinc half-cell electrochemical performance in zinc/bromine flow batteries[J]. RSC Advances, 2016, 6(33): 27788-27797. |
32 | WU T, HUANG K L, LIU S Q, et al. Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery[J]. Journal of Solid State Electrochemistry, 2012, 16(2): 579-585. |
[1] | Zhaokai YUAN, Qiuhua FAN, Dongqing WANG, Tianmin SUN. State of charge estimation for lithium-ion batteries under multiple temperatures based on the MIAEK algorithm [J]. Energy Storage Science and Technology, 2024, 13(2): 680-690. |
[2] | Shuangming DUAN, Shengli ZHANG. Lithium-ion battery parameter identification based on adaptive multilayer RLS [J]. Energy Storage Science and Technology, 2024, 13(2): 712-720. |
[3] | Xintian XU, Bixiao ZHANG, Xinlong ZHU, Kaijie YANG. Refined thermal design optimization of energy storage battery system based on battery box openings [J]. Energy Storage Science and Technology, 2024, 13(2): 515-525. |
[4] | Panqing WANG, Yanjie HUANG, Yipeng HE, Qiheng CHEN, Ti YIN, Weihao CHEN, Lei TAN, Tianxiang NING, Kangyu ZOU, Lingjun LI. Research progress on the surface lithium residue of high-nickel cathode materials [J]. Energy Storage Science and Technology, 2024, 13(1): 92-112. |
[5] | Yayun LIAO, Feng ZHOU, Yingxi ZHANG, Tu'an LV, Yang HE, Xiaoyan CHEN, Kaifu HUO. Research progress on fast-charging graphite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 130-142. |
[6] | Hongyi LIANG, Feng CHEN, Youyi GAN, Dan SHAO. Characteristics of ternary cathode of lithium-ion power battery at low temperature [J]. Energy Storage Science and Technology, 2024, 13(1): 293-298. |
[7] | Linghu TIAN, Bingxia YUAN. Prediction of ion battery remaining life of energy storage system based on data preprocessing and computer VMD-LSTM-GPR [J]. Energy Storage Science and Technology, 2024, 13(1): 336-338. |
[8] | Lin LI. Technological landscape, challenges, and future outlook of the lithium-ion battery industry: An economic perspective [J]. Energy Storage Science and Technology, 2024, 13(1): 358-360. |
[9] | Runxing LIU, Yucheng GAI, Pinzhe YANG, Wei ZHANG, Qin LIU, Zejun DING, Xizhe MO. Health-status detection of lead-acid battery based on AC impedance spectroscopy [J]. Energy Storage Science and Technology, 2023, 12(11): 3499-3507. |
[10] | Chen WANG, Yongjun MIN. SOH estimation of lithium-ion batteries based on capacity increment curve and GWO-GPR [J]. Energy Storage Science and Technology, 2023, 12(11): 3508-3518. |
[11] | Chen GENG, Jinhao MENG, Qiao PENG, Tianqi LIU, Xueyang ZENG, Gang CHEN. Estimation of the state of health of lithium-ion batteries based on feature extraction of the relaxation process [J]. Energy Storage Science and Technology, 2023, 12(11): 3479-3487. |
[12] | Song CI, Congjia ZHANG, Baochang LIU, Yanglin ZHOU. Dynamic reconfigurable battery energy storage technology: Principle and application [J]. Energy Storage Science and Technology, 2023, 12(11): 3445-3455. |
[13] | Peng LIN, Tao LIU, Peng JIN, Zhenpo WANG, Shengjie WANG, Hongsheng YUAN, Ze MA, Yu DI. Identification of lithium-ion battery equivalent circuit model parameters based on the multi-innovation identification algorithm [J]. Energy Storage Science and Technology, 2023, 12(10): 3155-3169. |
[14] | Shuangming DUAN, Zhibo CHANG. Early multiple-fault diagnosis of series battery pack based on charging voltage [J]. Energy Storage Science and Technology, 2023, 12(10): 3221-3229. |
[15] | Shuangming DUAN, Penglai DONG. Adaptive charging strategy for lithium-ion battery based on differential voltage platform [J]. Energy Storage Science and Technology, 2023, 12(10): 3170-3180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||