Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (2): 712-720.doi: 10.19799/j.cnki.2095-4239.2023.0605
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Shuangming DUAN(), Shengli ZHANG
Received:
2023-09-05
Revised:
2023-09-10
Online:
2024-02-28
Published:
2024-03-01
Contact:
Shuangming DUAN
E-mail:duansm@neepu.edu.cn
CLC Number:
Shuangming DUAN, Shengli ZHANG. Lithium-ion battery parameter identification based on adaptive multilayer RLS[J]. Energy Storage Science and Technology, 2024, 13(2): 712-720.
Table 4
Comparison of voltage errors in different cases"
电流 文件 | 温度/℃ | 初始SOC/% | 算法 | RMSE×10-4/V | MAE×10-4/V |
---|---|---|---|---|---|
DST | 0 | 50 | AMLRLS | 26.4872 | 9.8814 |
AFFRLS | 41.1485 | 14.9455 | |||
RLS | 44.8108 | 17.2250 | |||
80 | AMLRLS | 21.7088 | 7.3372 | ||
AFFRLS | 33.9587 | 11.0849 | |||
RLS | 36.4855 | 12.4792 | |||
45 | 50 | AMLRLS | 8.6529 | 3.1361 | |
AFFRLS | 13.2339 | 4.8080 | |||
RLS | 14.4473 | 4.8633 | |||
80 | AMLRLS | 4.9829 | 2.5069 | ||
AFFRLS | 6.7103 | 3.2715 | |||
RLS | 8.2974 | 3.4952 | |||
FUDS | 0 | 50 | AMLRLS | 89.1604 | 46.0336 |
AFFRLS | 104.4175 | 54.9780 | |||
RLS | 112.4889 | 59.5618 | |||
80 | AMLRLS | 50.2489 | 22.7675 | ||
AFFRLS | 59.5605 | 27.1466 | |||
RLS | 64.0396 | 29.1888 | |||
45 | 50 | AMLRLS | 10.3818 | 4.6798 | |
AFFRLS | 13.5460 | 5.8574 | |||
RLS | 16.4590 | 6.8622 | |||
80 | AMLRLS | 7.0688 | 4.1482 | ||
AFFRLS | 8.6230 | 4.8412 | |||
RLS | 10.4544 | 5.2304 |
1 | 谭必蓉, 杜建华, 叶祥虎, 等. 基于模型的锂离子电池SOC估计方法综述[J]. 储能科学与技术, 2023, 12(6): 1995-2010. |
TAN B R, DU J H, YE X H, et al. Overview of SOC estimation methods for lithium-ion batteries based on model[J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. | |
2 | 刘雨洋, 王顺利, 谢滟馨, 等. 基于在线参数辨识和改进2RC-PNGV模型的锂离子电池建模与SOC估算研究[J]. 储能科学与技术, 2021, 10(6): 2312-2317. |
LIU Y Y, WANG S L, XIE Y X, et al. Research on Li-ion battery modeling and SOC estimation based on online parameter identification and improved 2RC-PNGV model[J]. Energy Storage Science and Technology, 2021, 10(6): 2312-2317. | |
3 | YANG R X, XIONG R, SHEN W X. On-board diagnosis of soft short circuit fault in lithium-ion battery packs for electric vehicles using an extended Kalman filter[J]. CSEE Journal of Power and Energy Systems, 2020, 8(1): 258-270. |
4 | FENG X N, PAN Y, HE X M, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage, 2018, 18: 26-39. |
5 | 刘志聪, 张彦会. 锂离子电池参数辨识及荷电状态的估算[J]. 储能科学与技术, 2022, 11(11): 3613-3622. |
LIU Z C, ZHANG Y H. Parameter identification and state of charge estimation of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(11): 3613-3622. | |
6 | WANG S L, TAKYI-ANINAKWA P, FAN Y C, et al. A novel feedback correction-adaptive Kalman filtering method for the whole-life-cycle state of charge and closed-circuit voltage prediction of lithium-ion batteries based on the second-order electrical equivalent circuit model[J]. International Journal of Electrical Power & Energy Systems, 2022, 139: 108020. |
7 | SHI J J, GUO H S, CHEN D W. Parameter identification method for lithium-ion batteries based on recursive least square with sliding window difference forgetting factor[J]. Journal of Energy Storage, 2021, 44: 103485. |
8 | SHI H T, WANG S L, WANG L P, et al. On-line adaptive asynchronous parameter identification of lumped electrical characteristic model for vehicle lithium-ion battery considering multi-time scale effects[J]. Journal of Power Sources, 2022, 517: 230725. |
9 | ZHOU S D, LIU X H, HUA Y, et al. Adaptive model parameter identification for lithium-ion batteries based on improved coupling hybrid adaptive particle swarm optimization- simulated annealing method[J]. Journal of Power Sources, 2021, 482: 228951. |
10 | LEBEL F A, MESSIER P, SARI A, et al. Lithium-ioncell equivalent circuit model identification by galvano-static intermittent titration technique[J]. Journalof Energy Storage, 2022, 54: 105303. |
11 | WANG S L, FERNANDEZ C, YU C M, et al. A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm[J]. Journal of Power Sources, 2020, 471: 228450. |
12 | WANG S L, TAKYI-ANINAKWA P, JIN S Y, et al. An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation[J]. Energy, 2022, 254: 124224. |
13 | TOWLIAT M, GUO Z, CIMINI L J, et al. Multi-layered recursive least squares for time-varying system identification[J]. IEEE Transactions on Signal Processing, 2022, 70: 2280-2292. |
14 | DU X H, MENG J H, ZHANG Y M, et al. An information appraisal procedure: Endows reliable online parameter identification to lithium-ion battery model[J]. IEEE Transactions on Industrial Electronics, 2022, 69(6): 5889-5899. |
15 | 刘伟, 杨耕, 孟德越, 等. 计及常用恒流工况的锂离子电池建模方法[J]. 电工技术学报, 2021, 36(24): 5186-5200. |
LIU W, YANG G, MENG D Y, et al. Modeling method of lithium-ion battery considering commonly used constant current conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5186-5200. | |
16 | 卫志农, 原康康, 成乐祥, 等. 基于多新息最小二乘算法的锂电池参数辨识[J]. 电力系统自动化, 2019, 43(15): 139-145. |
WEI Z N, YUAN K K, CHENG L X, et al. Parameter identification of lithium-ion battery based on multi-innovation least squares algorithm[J]. Automation of Electric Power Systems, 2019, 43(15): 139-145. | |
17 | 朱瑞, 段彬, 温法政, 等. 基于分布式最小二乘法的锂离子电池建模及参数辨识[J]. 机械工程学报, 2019, 55(20): 85-93. |
ZHU R, DUAN B, WEN F Z, et al. Lithium-ion battery modeling and parameter identification based on decentralized least squares method[J]. Journal of Mechanical Engineering, 2019, 55(20): 85-93. | |
18 | SIMON H.自适应滤波器原理(第五版)[M]. 郑宝玉,等,译. 北京: 电子工业出版社. 2016: 1-253. |
19 | TRAN M K, MATHEW M, JANHUNEN S, et al. A comprehensive equivalent circuit model for lithium-ion batteries, incorporating the effects of state of health, state of charge, and temperature on model parameters[J]. Journal of Energy Storage, 2021, 43: 103252. |
20 | SIVA SURIYA NARAYANAN S, THANGAVEL S. Machine learning-based model development for battery state of charge-open circuit voltage relationship using regression techniques[J]. Journal of Energy Storage, 2022, 49: 104098. |
[1] | Xiaolei LI, Jian GAO, Weidong ZHOU, Hong LI. Application of COMSOL multiphysics in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 546-567. |
[2] | Ke PENG, Zhicheng ZHANG, Youzhang HU, Xuhui ZHANG, Jiahui ZHOU, Bin LI. Finite element-based motion analysis and optimization of sagger in thermo-mechanical coupling field [J]. Energy Storage Science and Technology, 2024, 13(2): 634-642. |
[3] | Qikai LEI, Yin YU, Peng PENG, Man CHEN, Kaiqiang JIN, Qingsong WANG. Effect of thermal insulation material layout on thermal runaway propagation inhibition effect of 280 Ah lithium-iron phosphate battery [J]. Energy Storage Science and Technology, 2024, 13(2): 495-502. |
[4] | Ke LI, Yifan HAO, Zhenhua FANG, Jing WANG, Songtong ZHANG, Xiayu ZHU, Jingyi QIU, Hai MING. Development and military application analysis of high-power chemical power supply system [J]. Energy Storage Science and Technology, 2024, 13(2): 436-461. |
[5] | Mengqiong SONG, Yu PENG, Ziqiang LIAO. Research on battery thermal management based on electrochemical model [J]. Energy Storage Science and Technology, 2024, 13(2): 578-585. |
[6] | Yuanming SONG, Yajie LIU, Guang JIN, Xing ZHOU, Xucheng HUANG. Review of energy management methods for lithium-ion battery/supercapacitor hybrid energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(2): 652-668. |
[7] | Xuejiao DAI, Jie YAN, Guan WANG, Haotian DONG, Danfeng JIANG, Zewei WEI, Fanxing MENG, Songtao LIU, Haitao ZHANG. Research progress of key materials for niobium-based low temperature batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 311-324. |
[8] | Yayun LIAO, Feng ZHOU, Yingxi ZHANG, Tu'an LV, Yang HE, Xiaoyan CHEN, Kaifu HUO. Research progress on fast-charging graphite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 130-142. |
[9] | Xin JIN, Jianru ZHANG, Qiyu WANG, Rui ZHANG, Bitong WANG, Zhongyang ZHANG, Hailong YU, Xiqian YU, Hong LI. Study on thermal runaway of hybrid solid-liquid batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 48-56. |
[10] | Lin LI. Technological landscape, challenges, and future outlook of the lithium-ion battery industry: An economic perspective [J]. Energy Storage Science and Technology, 2024, 13(1): 358-360. |
[11] | Hongyi LIANG, Feng CHEN, Youyi GAN, Dan SHAO. Characteristics of ternary cathode of lithium-ion power battery at low temperature [J]. Energy Storage Science and Technology, 2024, 13(1): 293-298. |
[12] | Ye XIAO, Lei XU, Chong YAN, Jiaqi HUANG. Design and application of reference electrodes for lithium batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 82-91. |
[13] | Zhaoyang LI, Dinghong LIU, Yanyan ZHAO, Man CHEN, Qikai LEI, Peng PENG, Lei LIU. Nail penetration characteristics of high-energy-density lithium-ion pouch cell [J]. Energy Storage Science and Technology, 2024, 13(1): 57-71. |
[14] | Wanwei JIANG, Chengjing LIANG, Li QIAN, Meicheng LIU, Mengxiang ZHU, Jun MA. Regulating tin-based three-dimensional graphene foam and its performance as a lithium-ion battery anode [J]. Energy Storage Science and Technology, 2023, 12(9): 2746-2751. |
[15] | Xin CHEN, Yunwu LI, Xincheng LIANG, Falin LI, Zhidong ZHANG. Battery health state estimation of combined Transformer-GRU based on modal decomposition [J]. Energy Storage Science and Technology, 2023, 12(9): 2927-2936. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||