Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (2): 578-585.doi: 10.19799/j.cnki.2095-4239.2023.0620
• Energy Storage System and Engineering • Previous Articles Next Articles
Mengqiong SONG(), Yu PENG, Ziqiang LIAO
Received:
2023-09-11
Revised:
2023-10-14
Online:
2024-02-28
Published:
2024-03-01
Contact:
Mengqiong SONG
E-mail:songmq_wh@163.com
CLC Number:
Mengqiong SONG, Yu PENG, Ziqiang LIAO. Research on battery thermal management based on electrochemical model[J]. Energy Storage Science and Technology, 2024, 13(2): 578-585.
Table 1
Battery electrochemical specifications"
参数 | 参数含义/单位 | 铝 | 正极 | 隔膜 | 负极 | 铜 | 来源 |
---|---|---|---|---|---|---|---|
L | 电极厚度/μm | 16 | 92 | 20 | 59 | 9 | [ |
r | 粒子半径/μm | 1.15 | 14.75 | [ | |||
Cs,max | 固相颗粒最大嵌锂溶度/(mol/m3) | 22806 | 31370 | [ | |||
Cs,0 | 固相初始锂离子溶度/(mol/m3) | 3800 | 21061 | ||||
Cl,0 | 液相初始锂离子溶度/(mol/m3) | 1500 | [ | ||||
εs | 固相体积分数 | 0.51 | 0.72 | ||||
εl | 液相体积分数 | 0.21 | 0.4 | 0.22 | |||
Ds | 固相扩散系数/(m2/s) | 1.25×10-15 | 3.90×10-14 | [ | |||
Dl | 液相扩散系数/(m2/s) | 方程式(12) | [ | ||||
σs | 固相电导率/(S/m) | 0.5 | 100 | [ | |||
σl | 液相电导率/(S/m) | 方程式(13) | [ | ||||
Kref | 反应速率常数/(m/s) | 1.40×10-12 | 3.00×10-11 | [ | |||
E | 活化能/(J/mol·m-1) | 4000 | 4000 | [ | |||
γ | 布鲁格曼系数 | 1.5 | 1.5 | 1.5 | [ | ||
Tref | 参考温度/℃ | 25 | [ | ||||
α | 传递系数 | 0.5 | 0.5 | [ | |||
t+ | 锂离子迁移数 | 0.363 | [ | ||||
F | 法拉第常数/(C/mol) | 96487 | [ |
1 | 陈桂泉, 沙盈吟, 赵威风, 等. 动力电池老化诱发热失控机理仿真[J]. 储能科学与技术, 2022, 11(12): 3987-3998. |
CHEN G Q, SHA Y Y, ZHAO W F, et al. Simulation study on the mechanism and process of thermal runaway induced by aging of lithium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(12): 3987-3998. | |
2 | 孙涛, 郑侠, 郑岳久, 等. 基于电化学热耦合模型的锂离子电池快充控制[J]. 汽车工程, 2022, 44(4): 495-504. |
SUN T, ZHENG X, ZHENG Y J, et al. Fast charging control of lithium-ion batteries based on electrochemical-thermal coupling model[J]. Automotive Engineering, 2022, 44(4): 495-504. | |
3 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. |
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016. | |
4 | BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5. |
5 | DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526. |
6 | DU S L, LAI Y Q, AI L, et al. An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method[J]. Applied Thermal Engineering, 2017, 121: 501-510. |
7 | MEI W X, CHEN H D, SUN J H, et al. Numerical study on tab dimension optimization of lithium-ion battery from the thermal safety perspective[J]. Applied Thermal Engineering, 2018, 142: 148-165. |
8 | LIN X W, ZHOU Z F, ZHU X G, et al. Non-uniform thermal characteristics investigation of three-dimensional electrochemical-thermal coupled model for pouch lithium-ion battery[J]. Journal of Cleaner Production, 2023, 417: 137912. |
9 | HUANG Y F, LAI X, REN D S, et al. Thermal and stoichiometry inhomogeneity investigation of large-format lithium-ion batteries via a three-dimensional electrochemical-thermal coupling model[J]. Electrochimica Acta, 2023, 468: 143212. |
10 | LI J H, HUANG J H, CAO M. Properties enhancement of phase-change materials via silica and Al honeycomb panels for the thermal management of LiFeO4 batteries[J]. Applied Thermal Engineering, 2018, 131: 660-668. |
11 | THOMAS E V, CASE H L, DOUGHTY D H, et al. Accelerated power degradation of Li-ion cells[J]. Journal of Power Sources, 2003, 124(1): 254-260. |
12 | PESARAN A A. Battery thermal models for hybrid vehicle simulations[J]. Journal of Power Sources, 2002, 110(2): 377-382. |
13 | WANG S P, ZHANG D F, LI C H, et al. Numerical optimization for a phase change material based lithium-ion battery thermal management system[J]. Applied Thermal Engineering, 2023, 222: 119839. |
14 | WU X H, WANG K, CHANG Z J, et al. Experimental and numerical study on hybrid battery thermal management system combining liquid cooling with phase change materials[J]. International Communications in Heat and Mass Transfer, 2022, 139: 106480. |
15 | KENISARIN M, MAHKAMOV K, KAHWASH F, et al. Enhancing thermal conductivity of paraffin wax 53–57 ℃ using expanded graphite[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110026. |
16 | SARI A, KARAIPEKLI A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material[J]. Applied Thermal Engineering, 2007, 27(8/9): 1271-1277. |
17 | WANG Q, ZHOU D, CHEN Y, et al. Characterization and effects of thermal cycling on the properties of paraffin/expanded graphite composites [J]. Pergamon, 2020, 147(1): 1131-1138. |
18 | ZHANG X, LIU C Z, RAO Z H. Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material[J]. Journal of Cleaner Production, 2018, 201: 916-924. |
19 | BAIS A, SUBHEDAR D, PANCHAL S. Experimental investigation of longevity and temperature of a lithium-ion battery cell using phase change material based battery thermal management system[J]. Materials Today: Proceedings, 2023 |
20 | AN Z J, JIA L, WEI L T, et al. Investigation on lithium-ion battery electrochemical and thermal characteristic based on electrochemical-thermal coupled model[J]. Applied Thermal Engineering, 2018, 137: 792-807. |
21 | JIANG F M, PENG P, SUN Y Q. Thermal analyses of LiFePO4/graphite battery discharge processes[J]. Journal of Power Sources, 2013, 243: 181-194. |
22 | LAI Y Q, DU S L, AI L, et al. Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates[J]. International Journal of Hydrogen Energy, 2015, 40(38): 13039-13049. |
23 | GUO Z J, WANG Y, ZHAO S Y, et al. Investigation of battery thermal management system with considering effect of battery aging and nanofluids[J]. International Journal of Heat and Mass Transfer, 2023, 202: 123685. |
24 | 黄菊花, 陈强, 曹铭, 等. 相变材料与水套式液冷结构耦合的圆柱型锂离子电池组热管理仿真分析[J]. 储能科学与技术, 2021, 10(4): 1423-1431. |
HUANG J H, CHEN Q, CAO M, et al. Thermal management simulation analysis of cylindrical lithium-ion battery pack coupled with phase change material and water-jacketed liquid-cooled structures[J]. Energy Storage Science and Technology, 2021, 10(4): 1423-1431. |
[1] | Ke PENG, Zhicheng ZHANG, Youzhang HU, Xuhui ZHANG, Jiahui ZHOU, Bin LI. Finite element-based motion analysis and optimization of sagger in thermo-mechanical coupling field [J]. Energy Storage Science and Technology, 2024, 13(2): 634-642. |
[2] | Qi LIAO, Xiaolin CAO, Yibo DENG, Yaolin YANG, Ting CHEN. Heat dissipation simulation of tram supercapacitor module [J]. Energy Storage Science and Technology, 2024, 13(2): 702-711. |
[3] | Qikai LEI, Yin YU, Peng PENG, Man CHEN, Kaiqiang JIN, Qingsong WANG. Effect of thermal insulation material layout on thermal runaway propagation inhibition effect of 280 Ah lithium-iron phosphate battery [J]. Energy Storage Science and Technology, 2024, 13(2): 495-502. |
[4] | Ke LI, Yifan HAO, Zhenhua FANG, Jing WANG, Songtong ZHANG, Xiayu ZHU, Jingyi QIU, Hai MING. Development and military application analysis of high-power chemical power supply system [J]. Energy Storage Science and Technology, 2024, 13(2): 436-461. |
[5] | Shuangming DUAN, Shengli ZHANG. Lithium-ion battery parameter identification based on adaptive multilayer RLS [J]. Energy Storage Science and Technology, 2024, 13(2): 712-720. |
[6] | Xiaolei LI, Jian GAO, Weidong ZHOU, Hong LI. Application of COMSOL multiphysics in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 546-567. |
[7] | Xin LIU, Xiling MAO, Xinyu YAN, Junqiang WANG, Mengwei LI. Preparation and electrochemical properties of NiMn-MOF with 3D pore network electrode materials [J]. Energy Storage Science and Technology, 2024, 13(2): 361-369. |
[8] | Panchun TANG, Rong YAN, Can ZHANG, Ze SUN. Simulation of air- and liquid-cooled thermal management of stacked automotive supercapacitors [J]. Energy Storage Science and Technology, 2024, 13(2): 483-491. |
[9] | Yang ZHOU, Peiyu HAN, Yingchun NIU, Chunming XU, Quan XU. Fabrication of metal-organic framework-derived C-Bi/CC electrode materials and their electrochemical properties in ICRFB [J]. Energy Storage Science and Technology, 2024, 13(2): 381-389. |
[10] | Yuanming SONG, Yajie LIU, Guang JIN, Xing ZHOU, Xucheng HUANG. Review of energy management methods for lithium-ion battery/supercapacitor hybrid energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(2): 652-668. |
[11] | Su YAN, Fangfang ZHONG, Junwei LIU, Mei DING, Chuankun JIA. Key materials and advanced characterization of high-energy-density flow battery [J]. Energy Storage Science and Technology, 2024, 13(1): 143-156. |
[12] | Xuejiao DAI, Jie YAN, Guan WANG, Haotian DONG, Danfeng JIANG, Zewei WEI, Fanxing MENG, Songtao LIU, Haitao ZHANG. Research progress of key materials for niobium-based low temperature batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 311-324. |
[13] | Wenxin TONG, Zhongyuan HUANG, Rui WANG, Sihao DENG, Lunhua HE, Yinguo XIAO. Spatially-resolved neutron diffraction study of the homogeneity of electrochemical reaction in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 72-81. |
[14] | Yayun LIAO, Feng ZHOU, Yingxi ZHANG, Tu'an LV, Yang HE, Xiaoyan CHEN, Kaifu HUO. Research progress on fast-charging graphite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 130-142. |
[15] | Yimei OUYANG, Mengmeng ZHAO, Guiming ZHONG, Zhangquan PENG. Nuclear magnetic resonance spectroscopy for probing interfaces in electrochemical energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(1): 157-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||