Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (1): 311-324.doi: 10.19799/j.cnki.2095-4239.2023.0641
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xuejiao DAI1(), Jie YAN1, Guan WANG1, Haotian DONG1, Danfeng JIANG1, Zewei WEI1, Fanxing MENG2, Songtao LIU2, Haitao ZHANG1,3()
Received:
2023-09-18
Revised:
2023-10-19
Online:
2024-01-05
Published:
2024-01-22
Contact:
Haitao ZHANG
E-mail:daixuejiao@ipe.ac.cn;htzhang@ipe.ac.cn
CLC Number:
Xuejiao DAI, Jie YAN, Guan WANG, Haotian DONG, Danfeng JIANG, Zewei WEI, Fanxing MENG, Songtao LIU, Haitao ZHANG. Research progress of key materials for niobium-based low temperature batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 311-324.
Table 1
Modification method of niobium-based oxide[39-46]"
修饰改性方法 | 合成方法 | 电极材料 | 电化学性能 | 参考文献 |
---|---|---|---|---|
掺杂金属颗粒 | 球磨 | Cu0.02Ti0.94Nb2.04O7 | 315 mAh/g @ 0.1 C | [ |
球磨 | Ru0.01Ti0.99Nb2O7 | 351 mAh/g @ 0.1 C | [ | |
溶剂热 | Mo-TNO | 190 mAh/g @ 10 C | [ | |
复合碳基材料 | 溶剂热 | TiNb2O7/CNT-KB | 328 mAh/g @ 0.1 C | [ |
溶剂热 | TiNb2O7/C | 200 mAh/g @ 30 C | [ | |
溶剂热 | ACC@TNO | 356 mAh/g @ 0.1 C | [ | |
改变形貌 | 溶剂热 | MS-TNO NS | 349 mAh/g @ 1 C | [ |
溶剂热+静电纺丝 | WS2@TiNb2O7 HNs | 660 mAh/g @ 2 C | [ |
1 | 金明钢, 赵新兵, 沈垚, 等. 低温锂离子电池研究进展[J]. 电源技术, 2007, 131(11), 930-933. |
JIN M G, ZHAO X B, SHEN Y, et al. Development progress of low-temperature lithium-ion batteries[J]. Chinese Journal of Power Sources, 2007, 31(11): 930-933. | |
2 | WANG C Y, ZHANG G S, GE S H, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518. |
3 | YANG Y, RUSTOMJI C S, MENG Y S. Liquefied gas electrolytes for electrochemical energy storage devices[J]. ECS Meeting Abstracts, 2017, (1): 68. |
4 | FAN X L, JI X, CHEN L, et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents[J]. Nature Energy, 2019, 4(10): 882-890. |
5 | ZHANG S S, XU K, JOW T R. A new approach toward improved low temperature performance of Li-ion battery[J]. Electrochemistry Communications, 2002, 4(11): 928-932. |
6 | DONG X L, GUO Z W, GUO Z Y, et al. Organic batteries operated at -70℃[J]. Joule, 2018, 2(5): 902-913. |
7 | 田君, 胡道中, 王一拓, 等. 低温锂离子启动电池用电解液及电极材料综述[J]. 电源技术, 2019, 43(4): 677-679. |
TIAN J, HU D Z, WANG Y T, et al. Application prospects of electrolytes and electrode materials for low-temperature lithium-ion starting batteries[J]. Chinese Journal of Power Sources, 2019, 43(4): 677-679. | |
8 | XIAO L F, CAO Y L, AI X P, et al. Optimization of EC-based multi-solvent electrolytes for low temperature applications of lithium-ion batteries[J]. Electrochimica Acta, 2004, 49(27): 4857-4863. |
9 | PLICHTA E J, BEHL W K. A low-temperature electrolyte for lithium and lithium-ion batteries[J]. Journal of Power Sources, 2000, 88(2): 192-196. |
10 | MANDAL B K, PADHI A K, SHI Z, et al. New low temperature electrolytes with thermal runaway inhibition for lithium-ion rechargeable batteries[J]. Journal of Power Sources, 2006, 162(1): 690-695. |
11 | 洪波, 闫霄林, 洪树, 等. 宽温域锂离子电池功能电解液的研究进展[J]. 中国有色金属学报, 2017, 27(6): 1208-1221. |
HONG B, YAN X L, HONG S, et al. Review of functional electrolyte for lithium-ion battery working in wide temperature scope[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1208-1221. | |
12 | 周立超, 姜楠, 燕思潼, 等. 锂离子动力电池低温电解液研究及优化进展[J]. 电源技术, 2021, 45(12): 1655-1659. |
ZHOU L C, JIANG N, YAN S T, et al. Research and optimization progress of low-temperature electrolyte for lithium-ion power battery[J]. Chinese Journal of Power Sources, 2021, 45(12): 1655-1659. | |
13 | 刘建文, 常赟. 钛酸锂材料蓄电池低温性能[J]. 电源技术, 2013, 37(9): 1524-1526, 1529. |
LIU J W, CHANG Y. Research of low-temperature performance of Li4Ti5O12 material battery[J]. Chinese Journal of Power Sources, 2013, 37(9): 1524-1526, 1529. | |
14 | LÜ X J, YANG W G, QUAN Z W, et al. Enhanced electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions[J]. Journal of the American Chemical Society, 2014, 136(1): 419-426. |
15 | 张丽娟, 李法强, 诸葛芹, 等. 锂离子二次电池低温电解液的研究进展[J]. 盐湖研究, 2009, 17(2): 57-62. |
ZHANG L J, LI F Q, ZHUGE Q, et al. Research progress of low temperature electrolytes for Li-ion batteries[J]. Journal of Salt Lake Research, 2009, 17(2): 57-62. | |
16 | 刘旭, 杨续来. 锂离子电池电解质锂盐的研究进展[J]. 电源技术, 2016, 40(1): 218-220. |
LIU X, YANG X L. Research status of lithium salt for lithium ion battery[J]. Chinese Journal of Power Sources, 2016, 40(1): 218-220. | |
17 | ZHANG S S, XU K, JOW T R. Low temperature performance of graphite electrode in Li-ion cells[J]. Electrochimica Acta, 2002, 48(3): 241-246. |
18 | HUANG C K, SAKAMOTO J S, WOLFENSTINE J, et al. The limits of low-temperature performance of Li-ion cells[J]. Journal of the Electrochemical Society, 2000, 147(8): 2893. |
19 | AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature Materials, 2013, 12(6): 518-522. |
20 | WANG W L, OH B Y, PARK J Y, et al. Solid-state synthesis of Ti2Nb10O29/reduced graphene oxide composites with enhanced lithium storage capability[J]. Journal of Power Sources, 2015, 300: 272-278. |
21 | CHEN L, LU C, YIN S, et al. Effect of Nb5+ doping on the structure and electrochemical performances of LiFePO4[J]. IOP Conference Series: Materials Science and Engineering, 2019, 493: 012045. |
22 | YUE R Y, XIA F, QI R J, et al. Trace Nb-doped Na0.7Ni0.3Co0.1Mn0.6O2 with suppressed voltage decay and enhanced low temperature performance[J]. Chinese Chemical Letters, 2021, 32(2): 849-853. |
23 | DONG X L, YANG Y, LI P L, et al. A high-rate and long-life rechargeable battery operated at -75 ℃[J]. Batteries & Supercaps, 2020, 3(10): 1016-1020. |
24 | MA X H, CAO X, YE Y Y, et al. Study on low-temperature performances of Nb16W5O55 anode for lithium-ion batteries[J]. Solid State Ionics, 2020, 353: 115376. |
25 | GRIFFITH K J, HARADA Y, EGUSA S, et al. Titanium niobium oxide: From discovery to application in fast-charging lithium-ion batteries[J]. Chemistry of Materials, 2021, 33(1): 4-18. |
26 | MENG Q H, CHEN F, HAO Q F, et al. Nb-doped Li4Ti5O12-TiO2 hierarchical microspheres as anode materials for high-performance Li-ion batteries at low temperature[J]. Journal of Alloys and Compounds, 2021, 885: 160842. |
27 | YIN Y, FANG Z, CHEN J W, et al. Hybrid Li-ion capacitor operated within an all-climate temperature range from -60 to +55 ℃[J]. ACS Applied Materials & Interfaces, 2021, 13(38): 45630-45638. |
28 | LIANG H C, LIU L L, WANG N, et al. Unusual mesoporous titanium niobium oxides realizing sodium-ion batteries operated at -40 ℃[J]. Advanced Materials, 2022, 34(28): doi: 10.1002/adma.202202873. |
29 | 符庆丰. 锂离子电池高性能Nb基氧化物负极材料的研究[D]. 海口: 海南大学, 2019. |
FU Q F. Study on the niobium-based oxides as high-performance anode materials for lithium-ion batteries[D]. Haikou: Hainan University, 2019. | |
30 | CAVA R J, MURPHY D W, ZAHURAK S M. Lithium insertion in wadsley-roth phases based on niobium oxide[J]. Journal of the Electrochemical Society, 1983, 130(12): 2345-2351. |
31 | 孙德旺, 蒋必志, 袁涛, 等. 钛铌氧化物用于锂离子电池负极的研究进展[J]. 储能科学与技术, 2021, 10(6): 2127-2143. |
SUN D W, JIANG B Z, YUAN T, et al. Research progress of titanium niobium oxide used as anode of lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(6): 2127-2143. | |
32 | 刘旭恒, 黄少波, 赵中伟, 等. Nb5+掺杂LiFePO4/C的反应挤出合成[J]. 中国有色金属学报, 2012, 22(11): 3236-3240. |
LIU X H, HUANG S B, ZHAO Z W, et al. Synthesis of LiFePO4/C doped with Nb5+ by reaction extrusion[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(11): 3236-3240. | |
33 | WU W C, HUANG J F, LI J Y, et al. Inducing[001]-orientation in Nb2O5 capsule-nanostructure for promoted Li+ diffusion process[J]. Electrochimica Acta, 2019, 298: 449-458. |
34 | HAN J T, HUANG Y H, GOODENOUGH J B. New anode framework for rechargeable lithium batteries[J]. Chemistry of Materials, 2011, 23(8): 2027-2029. |
35 | 万明远. 煅烧温度对五氧化二铌物理性能的影响[J]. 稀有金属与硬质合金, 2002, 30(1): 19-23. |
WAN M Y. Influence of calcination temperature on Nb2O5 physical property[J]. Rare Metals and Cemented Carbides, 2002, 30(1): 19-23. | |
36 | 李长乐. T相五氧化二铌锂离子电池负极材料的制备及其电化学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
LI C (L/Y). Preparation and property of T-Nb2O5 negative electrodes for lithium-ion batteries[D]. Harbin: Harbin Institute of Technology, 2016. | |
37 | 仵婉晨. Nb2O5基纳米电极材料的制备及电化学性能研究[D]. 西安: 陕西科技大学, 2019. |
WU W C. Preparation and electrochemical performance of Nb2O5 based nanoelectrode materials[D]. Xi'an: Shaanxi University of Science & Technology, 2019. | |
38 | LIU A, ZHANG H T, XING C X, et al. Intensified energy storage in high-voltage nanohybrid supercapacitors via the efficient coupling between TiNb2O7/holey-rGO nanoarchitectures and ionic liquid-based electrolytes[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21349-21361. |
39 | YANG C, LIN C F, LIN S W, et al. Cu0.02Ti0.94Nb2.04O7: An advanced anode material for lithium-ion batteries of electric vehicles[J]. Journal of Power Sources, 2016, 328: 336-344. |
40 | LIN C F, YU S, WU S Q, et al. Ru0.01Ti0.99Nb2O7 as an intercalation-type anode material with a large capacity and high rate performance for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(16): 8627-8635. |
41 | SONG H, KIM Y T. A Mo-doped TiNb2O7 anode for lithium-ion batteries with high rate capability due to charge redistribution[J]. Chemical Communications, 2015, 51(48): 9849-9852. |
42 | LIU M, DONG H C, ZHANG S, et al. Three-dimensional porous TiNb2O7/CNT-KB composite microspheres as lithium-ion battery anode material[J]. ChemElectroChem, 2019, 6(15): 3959-3965. |
43 | YANG Y, YUE Y, WANG L, et al. Facile synthesis of mesoporous TiNb2O7/C microspheres as long-life and high-power anodes for lithium-ion batteries[J]. International Journal of Hydrogen Energy, 2020, 45(22): 12583-12592. |
44 | LUO J, PENG J, ZENG P, et al. TiNb2O7 nano-particle decorated carbon cloth as flexible self-support anode material in lithium-ion batteries[J]. Electrochimica Acta, 2020, 332: 135469. |
45 | LIANG D W, LU Y, HU L, et al. Mesoporous TiNb2O7 nanosheets anode with excellent rate capability and cycling performance in lithium ion half/full batteries[J]. Journal of Power Sources, 2022, 544: 231897. |
46 | YIN L H, PHAM-CONG D, JEON I, et al. Electrochemical performance of vertically grown WS2 layers on TiNb2O7 nanostructures for lithium-ion battery anodes[J]. Chemical Engineering Journal, 2020, 382: 122800. |
47 | ZHANG Y, KANG C, ZHAO W, et al. Crystallographic engineering to reduce diffusion barrier for enhanced intercalation pseudocapacitance of TiNb2O7 in fast-charging batteries[J]. Energy Storage Materials, 2022, 47: 178-186. |
48 | YAO M, LIU A, XING C X, et al. Asymmetric supercapacitor comprising a core-shell TiNb2O7@MoS2/C anode and a high voltage ionogel electrolyte[J]. Chemical Engineering Journal, 2020, 394: 124883. |
49 | LUO D, MA C Y, HOU J F, et al. Integrating nanoreactor with O-Nb-C heterointerface design and defects engineering toward high-efficiency and longevous sodium ion battery (adv. energy mater. 18/2022)[J]. Advanced Energy Materials, 2022, 12(18): 2103716. |
50 | LI Q Y, JIAO S H, LUO L L, et al. Wide-temperature electrolytes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18826-18835. |
51 | XU J, WANG X, YUAN N Y, et al. Extending the low temperature operational limit of Li-ion battery to -80 ℃[J]. Energy Storage Materials, 2019, 23: 383-389. |
52 | HU B Q, ZHOU X S, XU J A, et al. Excellent rate and low temperature performance of lithium-ion batteries based on binder-free Li4Ti5O12 electrode[J]. ChemElectroChem, 2020, 7(3): 716-722. |
53 | GAI J L, YANG J R, YANG W, et al. Lithium Ion Batteries Operated at -100 ℃[J]. Chinese Physics Letters, 2023, 40(8): 1-4. |
54 | AURBACH D, GAMOLSKY K, MARKOVSKY B, et al. On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta, 2002, 47(9): 1423-1439. |
55 | XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
56 | FATHOLLAHI ZONOUZ A, MOSALLANEJAD B. Use of ethyl acetate for improving low-temperature performance of lithium-ion battery[J]. Monatshefte Für Chemie-Chemical Monthly, 2019, 150(6): 1041-1047. |
57 | 任永欢, 吴伯荣, 杨春巍, 等. 锂离子电池电解液新型锂盐的研究进展[J]. 电源技术, 2011, 35(9): 1171-1174. |
REN Y H, WU B R, YANG C W, et al. Review of new lithium slats of electrolyte for Li-ion batteries[J]. Chinese Journal of Power Sources, 2011, 35(9): 1171-1174. | |
58 | 宋印涛, 李连仲, 丁静, 等. 锂离子电池电解质盐的研究进展[J]. 浙江化工, 2010, 41(8): 24-26. |
SONG Y T, LI L Z, DING J, et al. Research process of lithium salts in lithium-ion battery electrolyte[J]. Zhejiang Chemical Industry, 2010, 41(8): 24-26. | |
59 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4418. |
60 | SUN Y L, LIU B, LIU L Y, et al. Ions transport in electrochemical energy storage devices at low temperatures[J]. Advanced Functional Materials, 2022, 32(15): 2109568. |
61 | ZHOU H M, XIAO K W, LI J. Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1.5O4 cathode material[J]. Journal of Power Sources, 2016, 302: 274-282. |
[1] | Guobin ZHONG, Xin YAO, Yongchao LIU, Qian HOU, Hongfa XIANG. Challenges and prospects of high-safety composite separators for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1794-1806. |
[2] | Ziwei TANG, Yupu SHI, Yuchan ZHANG, Yibo ZHOU, Huiling DU. Prediction of lithium-ion battery capacity degradation trajectory based on Informer [J]. Energy Storage Science and Technology, 2024, 13(5): 1658-1666. |
[3] | Nana FENG, Ming YANG, Zhouli HUI, Ruijie WANG, Hongyang NING. Prediction of the remaining useful life of lithium batteries based on Antlion optimization Gaussian process regression [J]. Energy Storage Science and Technology, 2024, 13(5): 1643-1652. |
[4] | Gaoqi LIAN, Min YE, Qiao WANG, Yan LI, Yuchuan MA, Yiding SUN, Penghui DU. State-of-charge estimation of lithium-ion batteries in rapid temperature-varying environments based on improved battery model and optimized adaptive cubature Kalman filter [J]. Energy Storage Science and Technology, 2024, 13(5): 1667-1676. |
[5] | Junjie LU, Dan PENG, Wenjing NI, Yuan YANG, Jinglun WANG. Research progress on electrolyte for Li/CF x battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1487-1495. |
[6] | Xinbing XIE, Kaiyue YANG, Xiaozhong DU. Mechanical behavior and structure of lithium-ion battery electrode calendering process [J]. Energy Storage Science and Technology, 2024, 13(5): 1699-1706. |
[7] | Lin HE, Jiangyan LIU, Bin LIU, Kuining LI, Shuai DAI. Generalized impact of data distribution diversity on SOC prediction of lithium battery [J]. Energy Storage Science and Technology, 2024, 13(5): 1677-1687. |
[8] | Yalu HAN, Yige CHEN, Huifang DI, Jiehuan LIN, Zhenbing WANG, Yang ZHANG, Fangyuan SU, Chengmeng CHEN. Research progress on failure of lithium-ion batteries under different service conditions [J]. Energy Storage Science and Technology, 2024, 13(4): 1338-1349. |
[9] | Ge LI, Xiangdong KONG, Yuedong SUN, Fei CHEN, Yuebo YUAN, Xuebing HAN, Yuejiu ZHENG. Method for sorting the dynamic characteristics of lithium-ion battery consistency based on production line big data [J]. Energy Storage Science and Technology, 2024, 13(4): 1188-1196. |
[10] | Ruizi WANG, Xunliang LIU, Ruifeng DOU, Wenning ZHOU, Juan FANG. A comparative study on diffusion-induced stress and thermal stress during discharge of ternary soft pack lithium-ion battery [J]. Energy Storage Science and Technology, 2024, 13(4): 1128-1141. |
[11] | Yuting WANG, Qiutong LI, Yiming HU, Xin GUO. Techniques for monitoring internal signals of lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1253-1265. |
[12] | Xiaoyu SHEN, Congbo YIN. SOH estimation of lithium-ion batteries using a convolutional Fastformer [J]. Energy Storage Science and Technology, 2024, 13(3): 990-999. |
[13] | Zhiguo ZHANG, Huaqing LI, Li WANG, Xiangming HE. Characteristics and preparation of metallized plastic current collectors for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 749-758. |
[14] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[15] | Meiling WU, Lei NIU, Shiyou LI, Dongni ZHAO. Research progress on cathode prelithium additives used in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 759-769. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||